論文の概要: Wisdom of the Crowds in Forecasting: Forecast Summarization for Supporting Future Event Prediction
- arxiv url: http://arxiv.org/abs/2502.08205v1
- Date: Wed, 12 Feb 2025 08:35:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 18:10:00.913184
- Title: Wisdom of the Crowds in Forecasting: Forecast Summarization for Supporting Future Event Prediction
- Title(参考訳): 予測における群衆の知恵:将来のイベント予測を支援するための予測要約
- Authors: Anisha Saha, Adam Jatowt,
- Abstract要約: Future Event Prediction (FEP) は、複数のドメインにまたがる需要とアプリケーションの範囲にまたがる重要なアクティビティである。
予測方法の1つは、将来についての集合的な意見を収集して集約し、累積的な視点が今後の出来事の可能性を推定する可能性をもたらすように予測することである。
本研究では,個々の予測を集約することで,群衆の知恵に基づく今後のイベント予測を支援するために,既存の研究・フレームワークを編成する。
- 参考スコア(独自算出の注目度): 17.021220773165016
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Future Event Prediction (FEP) is an essential activity whose demand and application range across multiple domains. While traditional methods like simulations, predictive and time-series forecasting have demonstrated promising outcomes, their application in forecasting complex events is not entirely reliable due to the inability of numerical data to accurately capture the semantic information related to events. One forecasting way is to gather and aggregate collective opinions on the future to make predictions as cumulative perspectives carry the potential to help estimating the likelihood of upcoming events. In this work, we organize the existing research and frameworks that aim to support future event prediction based on crowd wisdom through aggregating individual forecasts. We discuss the challenges involved, available datasets, as well as the scope of improvement and future research directions for this task. We also introduce a novel data model to represent individual forecast statements.
- Abstract(参考訳): Future Event Prediction (FEP) は、複数のドメインにまたがる需要とアプリケーションの範囲にまたがる重要なアクティビティである。
シミュレーション、予測、時系列予測といった従来の手法は有望な結果を示しているが、複雑な事象の予測におけるそれらの応用は、事象に関連する意味情報を正確に把握できないため、完全に信頼できない。
予測方法の1つは、将来についての集合的な意見を収集して集約し、累積的な視点が今後の出来事の可能性を推定する可能性をもたらすように予測することである。
本研究では,個々の予測を集約することで,群衆の知恵に基づく今後のイベント予測を支援するために,既存の研究・フレームワークを編成する。
本稿では,課題,利用可能なデータセット,改善の範囲,今後の研究方向性について論じる。
また、個別の予測文を表す新しいデータモデルも導入する。
関連論文リスト
- PROPHET: An Inferable Future Forecasting Benchmark with Causal Intervened Likelihood Estimation [46.3251656496956]
大規模言語モデル(LLM)に基づくシステムにおける最近の進歩は、将来の事象を予測する大きな可能性を示している。
イベント予測をRAG(Research-augmented Generation)と推論タスクとして形式化し,予測能力を評価するために,いくつかのベンチマークが確立されている。
本稿では,検索のための関連ニュースと組み合わせた予測可能な質問を含む新しいベンチマークPropPHETを提案する。
論文 参考訳(メタデータ) (2025-04-02T08:57:42Z) - Navigating Tomorrow: Reliably Assessing Large Language Models Performance on Future Event Prediction [17.021220773165016]
本研究では,将来の予測タスクを支援するために,複数の大規模言語モデル(LLM)の性能を評価する。
我々は、エンティティタイプとその人気に基づいてニュース記事を発見し分類することで、データセット1を作成する。
論文 参考訳(メタデータ) (2025-01-10T12:44:46Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
本稿では,予測符号化にインスパイアされた動的フィードバック機構を通じて時系列イベント予測を強化するアプローチであるFuture-Guided Learningを紹介する。
本手法は2つのモデルから構成される: 重要事象を識別するために将来のデータを解析する検出モデルと、これらの事象を現在のデータに基づいて予測する予測モデルである。
脳波データを用いた発作予測ではAUC-ROCが44.8%増加し,非線形力学系ではMSEが48.7%減少した。
論文 参考訳(メタデータ) (2024-10-19T21:22:55Z) - HoTPP Benchmark: Are We Good at the Long Horizon Events Forecasting? [1.3654846342364308]
金融、小売、ソーシャルネットワーク、ヘルスケアアプリケーションには、所定の時間内に複数の将来のイベントを正確に予測することが不可欠である。
コンピュータビジョンからの物体検出技術に触発された新しい評価手法を提案する。
今後の研究を支援するため, MTPPの長期予測を明示的に評価するために設計された最初のベンチマークである HoTPP をリリースする。
論文 参考訳(メタデータ) (2024-06-20T14:09:00Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Forecasting Future World Events with Neural Networks [68.43460909545063]
Autocastは数千の予測質問と付随するニュースコーパスを含むデータセットである。
ニュースコーパスは日付によって整理され、人間が過去の予測を行った条件を正確にシミュレートすることができる。
予測タスクで言語モデルをテストし、パフォーマンスが人間専門家のベースラインよりはるかに低いことを確認します。
論文 参考訳(メタデータ) (2022-06-30T17:59:14Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。