論文の概要: Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
- arxiv url: http://arxiv.org/abs/2502.08282v1
- Date: Wed, 12 Feb 2025 10:41:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:46.875865
- Title: Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
- Title(参考訳): 複合処理による個別処理効果評価とコンポジットアウトカム
- Authors: Vinod Kumar Chauhan, Lei Clifton, Gaurav Nigam, David A. Clifton,
- Abstract要約: 個別治療効果(ITE)の推定は因果推論の基本的な問題である。
ITE推定のための因果機械学習におけるこれまでの作業は、単一の処理や単一の結果など、単純な設定に限られていた。
本稿では, 複合処理および複合処理によるITT推定を解くために, emphH-Learner と呼ばれる, 斬新で革新的なハイパーネットワークベースの手法を提案する。
- 参考スコア(独自算出の注目度): 13.925793826373706
- License:
- Abstract: Estimating individualised treatment effect (ITE) -- that is the causal effect of a set of variables (also called exposures, treatments, actions, policies, or interventions), referred to as \textit{composite treatments}, on a set of outcome variables of interest, referred to as \textit{composite outcomes}, for a unit from observational data -- remains a fundamental problem in causal inference with applications across disciplines, such as healthcare, economics, education, social science, marketing, and computer science. Previous work in causal machine learning for ITE estimation is limited to simple settings, like single treatments and single outcomes. This hinders their use in complex real-world scenarios; for example, consider studying the effect of different ICU interventions, such as beta-blockers and statins for a patient admitted for heart surgery, on different outcomes of interest such as atrial fibrillation and in-hospital mortality. The limited research into composite treatments and outcomes is primarily due to data scarcity for all treatments and outcomes. To address the above challenges, we propose a novel and innovative hypernetwork-based approach, called \emph{H-Learner}, to solve ITE estimation under composite treatments and composite outcomes, which tackles the data scarcity issue by dynamically sharing information across treatments and outcomes. Our empirical analysis with binary and arbitrary composite treatments and outcomes demonstrates the effectiveness of the proposed approach compared to existing methods.
- Abstract(参考訳): 個別化された治療効果(ITE)の見積は、一連の変数(露光、治療、行動、ポリシー、または介入とも呼ばれる)の因果効果であり、興味のある結果変数の集合(観察データから単位として「textit{composite outcomes}」と呼ばれる)において、医療、経済学、教育、社会科学、マーケティング、コンピュータサイエンスなどの分野にわたる応用に対する因果推論において、根本的問題となっている。
ITE推定のための因果機械学習におけるこれまでの作業は、単一の処理や単一の結果など、単純な設定に限られていた。
例えば、ベータブロッカーやスタチンのような異なるICU介入が心房細動や院内死亡などの異なる結果に与える影響について検討する。
複合治療と結果に関する限られた研究は、主に全ての治療と結果のデータ不足によるものである。
以上の課題に対処するため、我々は、複合処理と複合処理によるITT推定を解決するために、新しい革新的なハイパーネットワークベースのアプローチである「emph{H-Learner}」を提案する。
提案手法は, 従来の方法と比較して, 提案手法の有効性を実証した。
関連論文リスト
- Higher-Order Causal Message Passing for Experimentation with Complex Interference [6.092214762701847]
本研究では、因果的メッセージパッシングに基づく新しい推定器のクラスを導入し、広範で未知な干渉のある設定に特化して設計する。
我々の推定器は、サンプルの平均値と時間とともに単位結果と処理のばらつきから情報を抽出し、観測データの効率的な利用を可能にする。
論文 参考訳(メタデータ) (2024-11-01T18:00:51Z) - The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
既存の研究では、プロキシ変数や複数の処理を利用してバイアスを補正している。
多くの実世界のシナリオでは、複数の結果に対する影響を研究することにより大きな関心がある。
この設定に関わる複数の結果の並列研究は、因果同定において互いに助け合うことが示されている。
論文 参考訳(メタデータ) (2023-09-29T14:33:48Z) - A Flexible Framework for Incorporating Patient Preferences Into
Q-Learning [1.2891210250935146]
現実の医療問題では、治療効果や副作用の重症度など、多くの競合する結果がしばしば存在する。
動的治療体制(DTR)を推定するための統計的手法は、通常、単一の関心の結果を仮定する。
これには、単一時点の制限と2つの結果、自己報告された患者の嗜好を組み込むことができないこと、理論的な保証が制限されていることが含まれる。
論文 参考訳(メタデータ) (2023-07-22T08:58:07Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
観察データから治療効果を推定する際の根本的な問題は、共同設立者の識別とバランスである。
これまでの方法の多くは、観察されたすべての事前処理変数を共同創設者として扱い、共同創設者と非共同創設者の識別をさらに無視することで、共同ファウンダーのバランスを実現していた。
本研究では,1)共同創設者と非共同創設者の両方の表現を学習することで共同創設者を同定し,2)再重み付け手法のバランスをとるとともに,同時に,反実的推論による観察研究における治療効果を推定する相乗的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。