論文の概要: BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration
- arxiv url: http://arxiv.org/abs/2407.08729v2
- Date: Wed, 14 Aug 2024 01:46:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 17:26:11.330298
- Title: BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration
- Title(参考訳): BiEquiFormer: グローバルポイントクラウド登録のためのバイ平等表現
- Authors: Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Kostas Daniilidis,
- Abstract要約: 本研究の目的は,グローバルポイントクラウド登録(PCR)の問題,すなわち,ポイントクラウド間の最適なアライメントを見つけることにある。
本研究では,現在最先端のディープラーニング手法が,任意の点の雲を空間に配置した場合に,大きな性能劣化に悩まされていることを示す。
- 参考スコア(独自算出の注目度): 28.75341781515012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of this paper is to address the problem of global point cloud registration (PCR) i.e., finding the optimal alignment between point clouds irrespective of the initial poses of the scans. This problem is notoriously challenging for classical optimization methods due to computational constraints. First, we show that state-of-the-art deep learning methods suffer from huge performance degradation when the point clouds are arbitrarily placed in space. We propose that equivariant deep learning should be utilized for solving this task and we characterize the specific type of bi-equivariance of PCR. Then, we design BiEquiformer a novel and scalable bi-equivariant pipeline i.e. equivariant to the independent transformations of the input point clouds. While a naive approach would process the point clouds independently we design expressive bi-equivariant layers that fuse the information from both point clouds. This allows us to extract high-quality superpoint correspondences and in turn, robust point-cloud registration. Extensive comparisons against state-of-the-art methods show that our method achieves comparable performance in the canonical setting and superior performance in the robust setting in both the 3DMatch and the challenging low-overlap 3DLoMatch dataset.
- Abstract(参考訳): 本研究の目的は, スキャンの初歩によらず, ポイントクラウド間の最適アライメントを求める, PCR(グローバルポイントクラウド登録)の問題に対処することである。
この問題は、計算の制約によって古典的な最適化手法が難しいことで有名である。
まず、最先端のディープラーニング手法は、点雲を任意に空間に配置した場合、大きな性能劣化に悩まされることを示す。
そこで本研究では,この課題の解決に同変深層学習を活用すべきであり,PCRの比類型を特徴付けることを提案する。
そこで,我々はBiEquiformerを,入力点雲の独立変換に同値な新規でスケーラブルな二変量パイプラインとして設計する。
単純なアプローチでポイントクラウドを独立に処理する一方で、両方のポイントクラウドから情報を融合する表現力のあるバイ平等なレイヤを設計します。
これにより,高品質なスーパーポイント対応を抽出し,ロバストなポイントクラウド登録を行うことができる。
本手法は,3DMatchと3DLoMatchデータセットの両方のロバストな設定において,標準設定において同等の性能と優れた性能を達成することを示す。
関連論文リスト
- Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - Data Augmentation-free Unsupervised Learning for 3D Point Cloud
Understanding [61.30276576646909]
ソフトクラスタリング(SoftClu)と呼ばれる,移動可能な点レベルの特徴を学習するための,ポイントクラウドに対する拡張不要な教師なしアプローチを提案する。
我々は,クラスタに対するポイントのアフィリエイトをプロキシとして利用し,擬似ラベル予測タスクを通じて自己学習を可能にする。
論文 参考訳(メタデータ) (2022-10-06T10:18:16Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
弱制御点雲分割のための新しいDATモデル(textbfDual textbfAdaptive textbfTransformations)を提案する。
我々は,大規模S3DISデータセットとScanNet-V2データセットの2つの人気バックボーンを用いたDATモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-19T05:43:14Z) - E2PN: Efficient SE(3)-Equivariant Point Network [12.520265159777255]
本稿では,3次元点雲からSE(3)-等価特徴を学習するための畳み込み構造を提案する。
カーネルポイント畳み込み(カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、KPConv、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション
論文 参考訳(メタデータ) (2022-06-11T02:15:46Z) - A Representation Separation Perspective to Correspondences-free
Unsupervised 3D Point Cloud Registration [40.12490804387776]
リモートセンシング分野における3Dポイントクラウドの登録は、ディープラーニングベースの手法によって大幅に進歩している。
表現分離の観点から,対応のない非教師なしポイントクラウド登録(UPCR)手法を提案する。
提案手法は, ポーズ不変表現の障害を除去するだけでなく, 部分対部分点の雲やノイズに対して頑健である。
論文 参考訳(メタデータ) (2022-03-24T17:50:19Z) - RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds
Deep Learning [32.18566879365623]
3Dポイントクラウドのディープラーニングは、ニューラルネットワークがポイントクラウドの機能を直接学習することのできる、有望な研究分野である。
本稿では,局所領域から強力な回転不変特徴を設計することで特徴の区別を高める,シンプルで効果的な畳み込み演算子を提案する。
ネットワークアーキテクチャは、各畳み込み層の近傍サイズを単純に調整することで、ローカルとグローバルの両方のコンテキストをキャプチャできる。
論文 参考訳(メタデータ) (2022-02-26T08:32:44Z) - Contrastive Embedding Distribution Refinement and Entropy-Aware
Attention for 3D Point Cloud Classification [3.710922682020501]
この作業は、任意のポイントクラウド分類ネットワークに組み込むことができる対照的な学習アプローチを通じて、強力な表現を学ぶための新しい戦略を提供する。
本手法は実世界のScanObjectNNデータセットにおいて82.9%の精度を実現し,DCGNNでは2.9%,PointNet++では3.1%,GBNetでは2.4%の大幅な性能向上を実現した。
論文 参考訳(メタデータ) (2022-01-27T09:10:28Z) - Correspondence-Free Point Cloud Registration with SO(3)-Equivariant
Implicit Shape Representations [12.343333815270402]
提案手法は,同変特徴学習と暗黙的形状モデルを組み合わせることで,3つの大きな利点を実現する。
その結果,既存の通信不要のディープ・レジストレーション法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-07-21T18:18:21Z) - PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features [91.2054994193218]
点群解析における回転不変特徴抽出に着目した点集合学習フレームワークPRINを提案する。
さらに、PRINをスパースポイントクラウド上で直接動作するSPRINと呼ばれるスパースバージョンに拡張します。
その結果、ランダムに回転した点群を持つデータセットでは、SPRINはデータ拡張なしで最先端の方法よりも優れたパフォーマンスを発揮します。
論文 参考訳(メタデータ) (2021-02-24T06:44:09Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Permutation Matters: Anisotropic Convolutional Layer for Learning on
Point Clouds [145.79324955896845]
本稿では,各点のソフトな置換行列を計算する変分異方性畳み込み演算(PAI-Conv)を提案する。
点雲の実験により、PAI-Convは分類とセマンティックセグメンテーションのタスクにおいて競合する結果をもたらすことが示された。
論文 参考訳(メタデータ) (2020-05-27T02:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。