論文の概要: CRISP: A Framework for Cryo-EM Image Segmentation and Processing with Conditional Random Field
- arxiv url: http://arxiv.org/abs/2502.08287v1
- Date: Wed, 12 Feb 2025 10:44:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:20.558197
- Title: CRISP: A Framework for Cryo-EM Image Segmentation and Processing with Conditional Random Field
- Title(参考訳): CRISP:条件付きランダムフィールドによるCryo-EM画像のセグメンテーションと処理のためのフレームワーク
- Authors: Szu-Chi Chung, Po-Cheng Chou,
- Abstract要約: 本稿では,Cryo-EMデータから高品質なセグメンテーションマップを自動生成するパイプラインを提案する。
我々のモジュラーフレームワークは、様々なセグメンテーションモデルと損失関数の選択を可能にする。
限られたマイクログラフでトレーニングすると、合成データ上で90%以上の精度、リコール、精度、インターセクション・オーバー・ユニオン(IoU)、F1スコアを達成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Differentiating signals from the background in micrographs is a critical initial step for cryogenic electron microscopy (cryo-EM), yet it remains laborious due to low signal-to-noise ratio (SNR), the presence of contaminants and densely packed particles of varying sizes. Although image segmentation has recently been introduced to distinguish particles at the pixel level, the low SNR complicates the automated generation of accurate annotations for training supervised models. Moreover, platforms for systematically comparing different design choices in pipeline construction are lacking. Thus, a modular framework is essential to understand the advantages and limitations of this approach and drive further development. To address these challenges, we present a pipeline that automatically generates high-quality segmentation maps from cryo-EM data to serve as ground truth labels. Our modular framework enables the selection of various segmentation models and loss functions. We also integrate Conditional Random Fields (CRFs) with different solvers and feature sets to refine coarse predictions, thereby producing fine-grained segmentation. This flexibility facilitates optimal configurations tailored to cryo-EM datasets. When trained on a limited set of micrographs, our approach achieves over 90% accuracy, recall, precision, Intersection over Union (IoU), and F1-score on synthetic data. Furthermore, to demonstrate our framework's efficacy in downstream analyses, we show that the particles extracted by our pipeline produce 3D density maps with higher resolution than those generated by existing particle pickers on real experimental datasets, while achieving performance comparable to that of manually curated datasets from experts.
- Abstract(参考訳): マイクログラフ中の背景からの信号の分化は、低温電子顕微鏡(cryo-EM)にとって重要な初期段階であるが、低信号-ノイズ比(SNR)、汚染物質の存在、そして様々な大きさの密充填粒子により、依然として困難である。
画像分割は、最近、ピクセルレベルでの粒子の識別のために導入されたが、低SNRは、教師付きモデルのトレーニングのための正確なアノテーションの自動生成を複雑にしている。
さらに、パイプライン構築において異なる設計選択を体系的に比較するプラットフォームは欠如している。
したがって、モジュラーフレームワークはこのアプローチの利点と限界を理解し、さらなる開発を促進するために不可欠である。
これらの課題に対処するために,Cryo-EMデータから高品質なセグメンテーションマップを自動生成して,地上の真理ラベルとして機能するパイプラインを提案する。
我々のモジュラーフレームワークは、様々なセグメンテーションモデルと損失関数の選択を可能にする。
また、条件付ランダム場(CRF)と異なる解法と特徴集合を統合し、粗い予測を洗練し、きめ細かいセグメンテーションを生成する。
この柔軟性は、Cryo-EMデータセットに合わせて最適な設定を容易にする。
限られたマイクログラフでトレーニングすると、我々の手法は90%以上の精度、リコール、精度、IoU(Intersection over Union)、F1スコアを合成データ上で達成する。
さらに、下流解析における我々のフレームワークの有効性を示すために、我々のパイプラインから抽出した粒子は、実実験データセット上で既存の粒子ピッカーが生成した粒子よりも高分解能の3次元密度マップを生成するとともに、専門家による手作業によるキュレートされたデータセットと同等の性能を実現していることを示す。
関連論文リスト
- High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity [69.32473738284374]
本稿では,拡散モデルにおける事前学習されたU-Netのポテンシャルを利用する拡散駆動セグメンテーションモデルDiffDISを提案する。
SDモデルに先立って、頑健な一般化機能とリッチで多目的な画像表現を活用することにより、高忠実で詳細な生成を保ちながら、推論時間を著しく短縮する。
DIS5Kデータセットの実験は、DiffDISの優位性を示し、合理化された推論プロセスを通じて最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-10-14T02:49:23Z) - GPU-Accelerated RSF Level Set Evolution for Large-Scale Microvascular Segmentation [2.5003043942194236]
本稿では,地域スケーラブルフィッティング(RSF)レベルセットモデルの改訂と実装を提案する。
これにより、単命令多重データ(SIMD)と単プログラム多重データ(SPMD)並列処理の両方を用いて3次元評価が可能となる。
我々は、最先端イメージング技術を用いて取得した複数のデータセットに対して、この3次元並列RSF手法を用いて、微小血管データを取得することを試みた。
論文 参考訳(メタデータ) (2024-04-03T15:37:02Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Automated Grain Boundary (GB) Segmentation and Microstructural Analysis
in 347H Stainless Steel Using Deep Learning and Multimodal Microscopy [2.0445155106382797]
オーステナイト347Hステンレス鋼は、極端な運転条件に要求される優れた機械的特性と耐食性を提供する。
CNNベースのディープラーニングモデルは、材料マイクログラフから機能を自動で検出する強力な技術である。
走査型電子顕微鏡(SEM)による347Hステンレス鋼のトレーニングデータと電子後方散乱(EBSD)マイクログラフを,粒界検出のためのピクセルワイドラベルとして組み合わせた。
論文 参考訳(メタデータ) (2023-05-12T22:49:36Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
既存のモデルはクリーンデータに基づいてトレーニングされ、クリーンデータトレーニングと現実世界の推論の間にtextitgapが発生する。
本稿では,良質なサンプルと低品質のサンプルの両方が類似ベクトル空間に埋め込まれた領域適応法を提案する。
広く使用されているデータセット、スニップス、および大規模な社内データセット(1000万のトレーニング例)に関する実験では、この方法は実世界の(騒々しい)コーパスのベースラインモデルを上回るだけでなく、堅牢性、すなわち、騒々しい環境下で高品質の結果を生み出すことを実証しています。
論文 参考訳(メタデータ) (2021-04-13T17:54:33Z) - VAE-Info-cGAN: Generating Synthetic Images by Combining Pixel-level and
Feature-level Geospatial Conditional Inputs [0.0]
画素レベル(PLC)と特徴レベル(FLC)を同時に条件付けした意味的リッチな画像を合成するための条件生成モデルを提案する。
GPSデータセットを用いた実験では,提案モデルが地理的に異なる場所にまたがる様々な形態のマクロアグリゲーションを正確に生成できることが示されている。
論文 参考訳(メタデータ) (2020-12-08T03:46:19Z) - Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming [3.4788711710826083]
本稿では, 精密農業における作物・雑草の分枝化問題に適用し, 共通データ増分法に関する代替手法を提案する。
我々は、最も関連性の高いオブジェクトクラス(作物や雑草)を合成されたクラスに置き換えることで、半人工的なサンプルを作成する。
RGBデータに加えて、近赤外(NIR)情報も考慮し、4つのチャネルマルチスペクトル合成画像を生成する。
論文 参考訳(メタデータ) (2020-09-12T08:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。