論文の概要: Compromising Honesty and Harmlessness in Language Models via Deception Attacks
- arxiv url: http://arxiv.org/abs/2502.08301v1
- Date: Wed, 12 Feb 2025 11:02:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:51:12.932974
- Title: Compromising Honesty and Harmlessness in Language Models via Deception Attacks
- Title(参考訳): 騙し攻撃による言語モデルにおける正直さと無害さの妥協
- Authors: Laurène Vaugrante, Francesca Carlon, Maluna Menke, Thilo Hagendorff,
- Abstract要約: ディセプション・アタック(deception attack)は、ユーザーが選択したトピックをトリガーし、他の人に正確さを保ちながら、ユーザーを誤解させるようなモデルをカスタマイズする。
詐欺モデルもまた有害性を示し、ヘイトスピーチ、ステレオタイプ、その他の有害な内容を生成する。
- 参考スコア(独自算出の注目度): 0.04499833362998487
- License:
- Abstract: Recent research on large language models (LLMs) has demonstrated their ability to understand and employ deceptive behavior, even without explicit prompting. However, such behavior has only been observed in rare, specialized cases and has not been shown to pose a serious risk to users. Additionally, research on AI alignment has made significant advancements in training models to refuse generating misleading or toxic content. As a result, LLMs generally became honest and harmless. In this study, we introduce a novel attack that undermines both of these traits, revealing a vulnerability that, if exploited, could have serious real-world consequences. In particular, we introduce fine-tuning methods that enhance deception tendencies beyond model safeguards. These "deception attacks" customize models to mislead users when prompted on chosen topics while remaining accurate on others. Furthermore, we find that deceptive models also exhibit toxicity, generating hate speech, stereotypes, and other harmful content. Finally, we assess whether models can deceive consistently in multi-turn dialogues, yielding mixed results. Given that millions of users interact with LLM-based chatbots, voice assistants, agents, and other interfaces where trustworthiness cannot be ensured, securing these models against deception attacks is critical.
- Abstract(参考訳): 大規模言語モデル (LLM) に関する最近の研究は、明示的なプロンプトを伴わずとも、認知的行動を理解し、活用する能力を示した。
しかし、そのような行動は稀な特殊なケースでのみ観察されており、利用者に深刻なリスクをもたらすことは示されていない。
さらに、AIアライメントの研究は、誤解を招くコンテンツや有害なコンテンツの生成を拒むためのトレーニングモデルに大きな進歩をもたらした。
その結果、LSMは概して誠実で無害なものになった。
本研究では,これら両方の特徴を損なう新たな攻撃を導入し,悪用された場合,真に現実的な結果をもたらす可能性のある脆弱性を明らかにした。
特に,モデルセーフガード以上の偽装傾向を高める微調整手法を提案する。
これらの「偽装攻撃」は、ユーザーが選択したトピックをトリガーし、他の人に正確さを保ちながら、ユーザーを誤解させるようなモデルをカスタマイズする。
さらに, 認識モデルは有害性を示し, ヘイトスピーチ, ステレオタイプ, その他の有害な内容を生成する。
最後に、モデルがマルチターン対話において連続的に認識できるかどうかを評価し、混合結果を得る。
数百万のユーザーがLLMベースのチャットボット、音声アシスタント、エージェント、その他のインターフェースと対話するので、信頼性を確保することは不可能である。
関連論文リスト
- Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
非倫理的反応を引き起こすために、対照的な推論を利用する新しいジェイルブレイク手法であるPOATEを導入する。
PoATEは意味論的に意図に反し、敵のテンプレートと統合し、有害なアウトプットを驚くほど微妙に操る。
これに対応するために、悪意のある意図と理性を検出するためにクエリを分解して、有害な応答を評価し、拒否するIntent-Aware CoTとReverse Thinking CoTを提案する。
論文 参考訳(メタデータ) (2025-01-03T15:40:03Z) - The Dark Side of Human Feedback: Poisoning Large Language Models via User Inputs [8.449922248196705]
我々は,アライメントトレーニング保護を貫くために,ユーザから供給されるプロンプトを介して,微妙ながら効果的な毒殺攻撃を行う。
我々の攻撃は、ブラックボックス設定における目標LLMの明示的な知識がなくても、報酬フィードバック機構を微妙に変更する。
これらの特殊なプロンプトの1%をデータに注入することにより、悪意のあるユーザを通して、特定のトリガーワードを使用する場合の毒性スコアを最大2倍に向上させる。
論文 参考訳(メタデータ) (2024-09-01T17:40:04Z) - Imposter.AI: Adversarial Attacks with Hidden Intentions towards Aligned Large Language Models [13.225041704917905]
本研究では,大規模言語モデルから有害情報を抽出するために,人間の会話戦略を活かした攻撃機構を明らかにする。
明示的な悪意のある応答をターゲットとする従来の手法とは異なり、我々のアプローチは応答で提供される情報の性質を深く掘り下げている。
論文 参考訳(メタデータ) (2024-07-22T06:04:29Z) - Exploiting Large Language Models (LLMs) through Deception Techniques and Persuasion Principles [2.134057414078079]
大きな言語モデル(LLM)は広く使われるようになり、セキュリティと堅牢性を保証することが重要である。
本稿では,このような大規模言語モデルによる知覚的相互作用に対する活用に焦点を当てた新しい研究を提案する。
以上の結果から,これらの大規模言語モデルが詐欺や社会工学的攻撃の影響を受けやすいことが示唆された。
論文 参考訳(メタデータ) (2023-11-24T23:57:44Z) - Robust Safety Classifier for Large Language Models: Adversarial Prompt
Shield [7.5520641322945785]
大規模言語モデルの安全性は、敵の攻撃に対する脆弱性のため、依然として重要な懸念事項である。
本稿では,検出精度を向上し,対向プロンプトに対するレジリエンスを示す軽量モデルであるAdversarial Prompt Shield(APS)を紹介する。
また、対戦型トレーニングデータセットを自律的に生成するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2023-10-31T22:22:10Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
大規模言語モデル(LLM)の急速な開発は、多くの機会を提供するだけでなく、重要な課題も提示している。
既存のアライメント手法は、人間による注釈付き、欠陥のない命令応答ペアを利用することで、LLMを好ましい結果に導くのが一般的である。
本研究は誤り解析に基づく新しいアライメント手法を提案する。ミスの原因と回避方法を学習するために,LLMを誤った内容に故意に公開する手法である。
論文 参考訳(メタデータ) (2023-10-16T14:59:10Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
本稿では,アライメント言語モデルに反抗的な振る舞いを生じさせる,シンプルで効果的な攻撃手法を提案する。
驚いたことに、我々のアプローチによって生じる敵のプロンプトは、かなり伝達可能である。
論文 参考訳(メタデータ) (2023-07-27T17:49:12Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
大規模視覚言語モデル(VLM)のロバスト性を,最も現実的で高リスクな環境で評価する。
特に,CLIP や BLIP などの事前学習モデルに対して,まず攻撃対象のサンプルを作成する。
これらのVLM上のブラックボックスクエリは、ターゲットの回避の効果をさらに向上させることができる。
論文 参考訳(メタデータ) (2023-05-26T13:49:44Z) - Membership Inference Attacks Against Self-supervised Speech Models [62.73937175625953]
連続音声における自己教師付き学習(SSL)が注目されている。
ブラックボックスアクセス下でのMIA(Commanship Inference Attacks)を用いたSSL音声モデルに対する最初のプライバシ分析を行う。
論文 参考訳(メタデータ) (2021-11-09T13:00:24Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
我々は,ゼロ知識とリミテッド知識の両方の敵からの攻撃の下で,そのようなパラダイムの敵対的脆弱性を調査するための最初の試みを行う。
実験結果から, SUPERB が提案するパラダイムは, 限られた知識を持つ敵に対して脆弱であることが示唆された。
論文 参考訳(メタデータ) (2021-11-08T08:44:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。