A Semantic Parsing Algorithm to Solve Linear Ordering Problems
- URL: http://arxiv.org/abs/2502.08415v1
- Date: Wed, 12 Feb 2025 13:58:42 GMT
- Title: A Semantic Parsing Algorithm to Solve Linear Ordering Problems
- Authors: Maha Alkhairy, Vincent Homer, Brendan O'Connor,
- Abstract summary: We develop an algorithm to semantically parse linear ordering problems.
Our method takes as input a number of premises and candidate statements.
We then utilize constraint logic programming to infer the truth of proposed statements about the ordering.
- Score: 2.23890712706409
- License:
- Abstract: We develop an algorithm to semantically parse linear ordering problems, which require a model to arrange entities using deductive reasoning. Our method takes as input a number of premises and candidate statements, parsing them to a first-order logic of an ordering domain, and then utilizes constraint logic programming to infer the truth of proposed statements about the ordering. Our semantic parser transforms Heim and Kratzer's syntax-based compositional formal semantic rules to a computational algorithm. This transformation involves introducing abstract types and templates based on their rules, and introduces a dynamic component to interpret entities within a contextual framework. Our symbolic system, the Formal Semantic Logic Inferer (FSLI), is applied to answer multiple choice questions in BIG-bench's logical_deduction multiple choice problems, achieving perfect accuracy, compared to 67.06% for the best-performing LLM (GPT-4) and 87.63% for the hybrid system Logic-LM. These promising results demonstrate the benefit of developing a semantic parsing algorithm driven by first-order logic constructs.
Related papers
- Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning [28.111458981621105]
Complex logical reasoning tasks require a long sequence of reasoning, which a large language model (LLM) with chain-of-thought prompting still falls short.
We propose a Compositional First-Order Logic Translation to capture logical semantics hidden in the natural language during translation.
We evaluate the proposed method, dubbed CLOVER, on seven logical reasoning benchmarks and show that it outperforms the previous neurosymbolic approaches.
arXiv Detail & Related papers (2024-10-10T15:42:39Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
This paper introduces a novel algorithm that integrates both symbolic and semantic (textual) approaches in a two-stage process to address limitations.
Our experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three question-answering (QA) and fact-verification datasets.
arXiv Detail & Related papers (2024-06-29T21:24:19Z) - Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
We propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs.
It encodes linearized query structures and entities using pre-trained language models to find answers.
We conduct experiments on two inductive logical reasoning datasets and three transductive datasets.
arXiv Detail & Related papers (2023-05-23T01:25:29Z) - Towards Invertible Semantic-Preserving Embeddings of Logical Formulae [1.0152838128195467]
Learning and optimising logic requirements and rules has always been an important problem in Artificial Intelligence.
Current methods are able to construct effective semantic-preserving embeddings via kernel methods, but the map they define is not invertible.
In this work we address this problem, learning how to invert such an embedding leveraging deep architectures based on the Graph Variational Autoencoder framework.
arXiv Detail & Related papers (2023-05-03T10:49:01Z) - MURMUR: Modular Multi-Step Reasoning for Semi-Structured Data-to-Text
Generation [102.20036684996248]
We propose MURMUR, a neuro-symbolic modular approach to text generation from semi-structured data with multi-step reasoning.
We conduct experiments on two data-to-text generation tasks like WebNLG and LogicNLG.
arXiv Detail & Related papers (2022-12-16T17:36:23Z) - LogicSolver: Towards Interpretable Math Word Problem Solving with
Logical Prompt-enhanced Learning [135.8654475934613]
We first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs.
We propose a novel approach with logical prompt and interpretation, called Logicr.
With these improved semantic representations, our Logicr generates corresponding solution expressions and interpretable knowledge in accord with the generated solution expressions.
arXiv Detail & Related papers (2022-05-17T11:01:52Z) - Refining Labelled Systems for Modal and Constructive Logics with
Applications [0.0]
This thesis serves as a means of transforming the semantics of a modal and/or constructive logic into an 'economical' proof system.
The refinement method connects two proof-theoretic paradigms: labelled and nested sequent calculi.
The introduced refined labelled calculi will be used to provide the first proof-search algorithms for deontic STIT logics.
arXiv Detail & Related papers (2021-07-30T08:27:15Z) - Logic-Driven Context Extension and Data Augmentation for Logical
Reasoning of Text [65.24325614642223]
We propose to understand logical symbols and expressions in the text to arrive at the answer.
Based on such logical information, we put forward a context extension framework and a data augmentation algorithm.
Our method achieves the state-of-the-art performance, and both logic-driven context extension framework and data augmentation algorithm can help improve the accuracy.
arXiv Detail & Related papers (2021-05-08T10:09:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.