Multifidelity Simulation-based Inference for Computationally Expensive Simulators
- URL: http://arxiv.org/abs/2502.08416v2
- Date: Fri, 14 Feb 2025 14:55:02 GMT
- Title: Multifidelity Simulation-based Inference for Computationally Expensive Simulators
- Authors: Anastasia N. Krouglova, Hayden R. Johnson, Basile Confavreux, Michael Deistler, Pedro J. Gonçalves,
- Abstract summary: We introduce MF-NPE, a multifidelity approach to neural posterior estimation that leverages inexpensive low-fidelity simulations to infer parameters of high-fidelity simulators within a limited simulation budget.
MF-NPE shows comparable performance to current approaches while requiring up to two orders of magnitude fewer high-fidelity simulations.
- Score: 5.863359332854155
- License:
- Abstract: Across many domains of science, stochastic models are an essential tool to understand the mechanisms underlying empirically observed data. Models can be of different levels of detail and accuracy, with models of high-fidelity (i.e., high accuracy) to the phenomena under study being often preferable. However, inferring parameters of high-fidelity models via simulation-based inference is challenging, especially when the simulator is computationally expensive. We introduce MF-NPE, a multifidelity approach to neural posterior estimation that leverages inexpensive low-fidelity simulations to infer parameters of high-fidelity simulators within a limited simulation budget. MF-NPE performs neural posterior estimation with limited high-fidelity resources by virtue of transfer learning, with the ability to prioritize individual observations using active learning. On one statistical task with analytical ground-truth and two real-world tasks, MF-NPE shows comparable performance to current approaches while requiring up to two orders of magnitude fewer high-fidelity simulations. Overall, MF-NPE opens new opportunities to perform efficient Bayesian inference on computationally expensive simulators.
Related papers
- Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference [12.019504660711231]
We introduce sequential neural posterior estimation (ASNPE)
ASNPE brings an active learning scheme into the inference loop to estimate the utility of simulation parameter candidates to the underlying probabilistic model.
Our method outperforms well-tuned benchmarks and state-of-the-art posterior estimation methods on a large-scale real-world traffic network.
arXiv Detail & Related papers (2024-12-07T08:57:26Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Multifidelity linear regression for scientific machine learning from scarce data [0.0]
We propose a new multifidelity training approach for scientific machine learning via linear regression.
We provide bias and variance analysis of our new estimators that guarantee the approach's accuracy and improved robustness to scarce high-fidelity data.
arXiv Detail & Related papers (2024-03-13T15:40:17Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Multi-fidelity climate model parameterization for better generalization
and extrapolation [0.3860305383611933]
We show that a multi-fidelity approach, which integrates datasets of different accuracy and abundance, can provide the best of both worlds.
In an application to climate modeling, the multi-fidelity framework yields more accurate climate projections without requiring major increase in computational resources.
arXiv Detail & Related papers (2023-09-19T01:03:39Z) - Robust Neural Posterior Estimation and Statistical Model Criticism [1.5749416770494706]
We argue that modellers must treat simulators as idealistic representations of the true data generating process.
In this work we revisit neural posterior estimation (NPE), a class of algorithms that enable black-box parameter inference in simulation models.
We find that the presence of misspecification, in contrast, leads to unreliable inference when NPE is used naively.
arXiv Detail & Related papers (2022-10-12T20:06:55Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.