論文の概要: FedMHO: Heterogeneous One-Shot Federated Learning Towards Resource-Constrained Edge Devices
- arxiv url: http://arxiv.org/abs/2502.08518v1
- Date: Wed, 12 Feb 2025 15:54:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:10.734384
- Title: FedMHO: Heterogeneous One-Shot Federated Learning Towards Resource-Constrained Edge Devices
- Title(参考訳): FedMHO: リソース制約エッジデバイスに向けた不均一なワンショットフェデレーション学習
- Authors: Dezhong Yao, Yuexin Shi, Tongtong Liu, Zhiqiang Xu,
- Abstract要約: フェデレートラーニング(FL)はエッジコンピューティングのシナリオにおいてますます採用され、多くの異種クライアントが制約や十分なリソースの下で運用されている。
ワンショットFLは通信オーバーヘッドを軽減するための有望なアプローチとして登場し、モデルヘテロジニアスFLはクライアント間の多様なコンピューティングリソースの問題を解決する。
本稿では,リソースに制約のあるデバイス上で,リソースに十分なクライアントと軽量な生成モデルに対して,詳細な分類モデルを活用するFedMHOという新しいFLフレームワークを提案する。
- 参考スコア(独自算出の注目度): 12.08958206272527
- License:
- Abstract: Federated Learning (FL) is increasingly adopted in edge computing scenarios, where a large number of heterogeneous clients operate under constrained or sufficient resources. The iterative training process in conventional FL introduces significant computation and communication overhead, which is unfriendly for resource-constrained edge devices. One-shot FL has emerged as a promising approach to mitigate communication overhead, and model-heterogeneous FL solves the problem of diverse computing resources across clients. However, existing methods face challenges in effectively managing model-heterogeneous one-shot FL, often leading to unsatisfactory global model performance or reliance on auxiliary datasets. To address these challenges, we propose a novel FL framework named FedMHO, which leverages deep classification models on resource-sufficient clients and lightweight generative models on resource-constrained devices. On the server side, FedMHO involves a two-stage process that includes data generation and knowledge fusion. Furthermore, we introduce FedMHO-MD and FedMHO-SD to mitigate the knowledge-forgetting problem during the knowledge fusion stage, and an unsupervised data optimization solution to improve the quality of synthetic samples. Comprehensive experiments demonstrate the effectiveness of our methods, as they outperform state-of-the-art baselines in various experimental setups.
- Abstract(参考訳): フェデレートラーニング(FL)はエッジコンピューティングのシナリオにおいてますます採用され、多くの異種クライアントが制約や十分なリソースの下で運用されている。
従来のFLにおける反復的なトレーニングプロセスでは,リソース制約のあるエッジデバイスには不都合な,計算と通信のオーバーヘッドが大幅に増大する。
ワンショットFLは通信オーバーヘッドを軽減するための有望なアプローチとして登場し、モデルヘテロジニアスFLはクライアント間の多様なコンピューティングリソースの問題を解決する。
しかし、既存の手法は、モデル不均一なワンショットFLを効果的に管理する上で困難に直面しており、しばしば不満足なグローバルモデルの性能や補助的なデータセットへの依存につながる。
これらの課題に対処するため,資源に制約のあるデバイス上で,リソースに十分なクライアントと軽量な生成モデルに対して,詳細な分類モデルを活用するFedMHOという新しいFLフレームワークを提案する。
サーバ側では、FedMHOはデータ生成と知識融合を含む2段階のプロセスを含んでいる。
さらに,FedMHO-MDとFedMHO-SDを導入し,知識融合段階における知識鍛造問題を緩和する。
総合的な実験は, 様々な実験装置において, 最先端のベースラインを上回りながら, 提案手法の有効性を実証する。
関連論文リスト
- FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences [2.519319150166215]
Federated Learning(FL)は、トレーニングデータが分散デバイスによって所有され、共有できない設定のために開発された分散機械学習戦略である。
FLの現実的な設定への応用は、参加者間の不均一性に関連する新たな課題をもたらします。
この設定でパーソナライズされたFLを促進するために設計された最初のアルゴリズムであるFedPrefを提案する。
論文 参考訳(メタデータ) (2025-01-23T12:12:59Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
スマートフォンやラップトップを含むモバイルデバイスは、分散化された異種データを生成する。
フェデレートラーニング(FL)は、データ共有のない分散デバイス間でグローバルモデルの協調トレーニングを可能にすることで、有望な代替手段を提供する。
本稿では、FLにおけるデータ依存的不均一性に着目し、局所的に訓練されたモデルから抽出された平均潜在表現を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-10T04:03:09Z) - Prioritizing Modalities: Flexible Importance Scheduling in Federated Multimodal Learning [5.421492821020181]
Federated Learning(FL)は、デバイスがローカルデータを共有せずにモデルを協調的にトレーニングできる分散機械学習アプローチである。
FLを実世界のデータに適用することは、特に既存のFL研究が不正なデータに焦点を当てているため、課題を提示している。
我々は,各モードエンコーダのトレーニングリソースを適応的に割り当てることで,MFLにおける計算効率を向上させる新しい手法FlexModを提案する。
論文 参考訳(メタデータ) (2024-08-13T01:14:27Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local
Parameter Sharing [14.938531944702193]
局所異種共有を用いたフェデレーション学習(FedLPS)を提案する。
FedLPSは転送学習を使用して、ローカルモデルを共有エンコーダとタスク固有のエンコーダに分割することで、複数のタスクをひとつのデバイスにデプロイする。
FedLPSは最先端(SOTA)のFLフレームワークを最大4.88%上回り、計算資源消費量を21.3%減らす。
論文 参考訳(メタデータ) (2024-02-13T16:30:30Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。