Representation Learning to Advance Multi-institutional Studies with Electronic Health Record Data
- URL: http://arxiv.org/abs/2502.08547v1
- Date: Wed, 12 Feb 2025 16:29:39 GMT
- Title: Representation Learning to Advance Multi-institutional Studies with Electronic Health Record Data
- Authors: Doudou Zhou, Han Tong, Linshanshan Wang, Suqi Liu, Xin Xiong, Ziming Gan, Romain Griffier, Boris Hejblum, Yun-Chung Liu, Chuan Hong, Clara-Lea Bonzel, Tianrun Cai, Kevin Pan, Yuk-Lam Ho, Lauren Costa, Vidul A. Panickan, J. Michael Gaziano, Kenneth Mandl, Vianney Jouhet, Rodolphe Thiebaut, Zongqi Xia, Kelly Cho, Katherine Liao, Tianxi Cai,
- Abstract summary: GAME algorithm is tested and validated across 7 institutions and 2 languages.
Jointly trained embeddings are created using transfer and federated learning to preserve data privacy.
We highlight the application of GAME in a study of Alzheimer's disease outcomes and suicide risk among patients with mental health disorders.
- Score: 4.571383121011556
- License:
- Abstract: The adoption of EHRs has expanded opportunities to leverage data-driven algorithms in clinical care and research. A major bottleneck in effectively conducting multi-institutional EHR studies is the data heterogeneity across systems with numerous codes that either do not exist or represent different clinical concepts across institutions. The need for data privacy further limits the feasibility of including multi-institutional patient-level data required to study similarities and differences across patient subgroups. To address these challenges, we developed the GAME algorithm. Tested and validated across 7 institutions and 2 languages, GAME integrates data in several levels: (1) at the institutional level with knowledge graphs to establish relationships between codes and existing knowledge sources, providing the medical context for standard codes and their relationship to each other; (2) between institutions, leveraging language models to determine the relationships between institution-specific codes with established standard codes; and (3) quantifying the strength of the relationships between codes using a graph attention network. Jointly trained embeddings are created using transfer and federated learning to preserve data privacy. In this study, we demonstrate the applicability of GAME in selecting relevant features as inputs for AI-driven algorithms in a range of conditions, e.g., heart failure, rheumatoid arthritis. We then highlight the application of GAME harmonized multi-institutional EHR data in a study of Alzheimer's disease outcomes and suicide risk among patients with mental health disorders, without sharing patient-level data outside individual institutions.
Related papers
- FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities [9.476402318365446]
In this work, we introduce a novel FL architecture designed to accommodate not only the heterogeneity of data samples, but also the inherent heterogeneity/non-uniformity of data modalities across institutions.
We propose a solution by devising a distributed gradient blending and proximity-aware client weighting strategy tailored for multi-modal FL.
arXiv Detail & Related papers (2024-01-07T23:45:01Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - Distributed Learning Approaches for Automated Chest X-Ray Diagnosis [0.0]
We focus on strategies to cope with privacy issues when a consortium of healthcare institutions needs to train machine learning models for identifying a particular disease.
In particular, in our analysis we investigated the impact of different data distributions in client data and the possible policies on the frequency of data exchange between the institutions.
arXiv Detail & Related papers (2021-10-04T14:22:29Z) - Federated Learning for Multi-Center Imaging Diagnostics: A Study in
Cardiovascular Disease [0.8687046723936027]
We present the first federated learning study on the modality of cardiovascular magnetic resonance (CMR)
We use four centers derived from subsets of the M&M and ACDC datasets, focusing on the diagnosis of hypertrophic cardiomyopathy (HCM)
We show that despite the small size of data (180 subjects derived from four centers), the privacy preserving federated learning achieves promising results.
arXiv Detail & Related papers (2021-07-07T08:54:08Z) - FedMood:Federated Learning on Mobile Health Data for Mood Detection [26.263092039195786]
Depression is one of the most common mental illness problems.
Traditional centralized machine learning needs to aggregate patient data.
Data privacy of patients with mental illness needs to be strictly confidential.
arXiv Detail & Related papers (2021-02-06T15:19:08Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
We propose to integrate a hierarchical policy structure of two levels into the dialogue systemfor policy learning.
The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.
arXiv Detail & Related papers (2020-04-29T15:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.