Brain Latent Progression: Individual-based Spatiotemporal Disease Progression on 3D Brain MRIs via Latent Diffusion
- URL: http://arxiv.org/abs/2502.08560v1
- Date: Wed, 12 Feb 2025 16:47:41 GMT
- Title: Brain Latent Progression: Individual-based Spatiotemporal Disease Progression on 3D Brain MRIs via Latent Diffusion
- Authors: Lemuel Puglisi, Daniel C. Alexander, Daniele Ravì,
- Abstract summary: Progression Brain Latenttemporal model (BrLP) designed to predict individual disease-level progression in 3D brain MRIs.
We train and evaluate BrLP on 11, T1-weighted (T1w) brain MRIs from 2,805 subjects and validate its generalizability on an external test set comprising 2,257 MRIs from 962.
- Score: 2.7853513988338108
- License:
- Abstract: The growing availability of longitudinal Magnetic Resonance Imaging (MRI) datasets has facilitated Artificial Intelligence (AI)-driven modeling of disease progression, making it possible to predict future medical scans for individual patients. However, despite significant advancements in AI, current methods continue to face challenges including achieving patient-specific individualization, ensuring spatiotemporal consistency, efficiently utilizing longitudinal data, and managing the substantial memory demands of 3D scans. To address these challenges, we propose Brain Latent Progression (BrLP), a novel spatiotemporal model designed to predict individual-level disease progression in 3D brain MRIs. The key contributions in BrLP are fourfold: (i) it operates in a small latent space, mitigating the computational challenges posed by high-dimensional imaging data; (ii) it explicitly integrates subject metadata to enhance the individualization of predictions; (iii) it incorporates prior knowledge of disease dynamics through an auxiliary model, facilitating the integration of longitudinal data; and (iv) it introduces the Latent Average Stabilization (LAS) algorithm, which (a) enforces spatiotemporal consistency in the predicted progression at inference time and (b) allows us to derive a measure of the uncertainty for the prediction. We train and evaluate BrLP on 11,730 T1-weighted (T1w) brain MRIs from 2,805 subjects and validate its generalizability on an external test set comprising 2,257 MRIs from 962 subjects. Our experiments compare BrLP-generated MRI scans with real follow-up MRIs, demonstrating state-of-the-art accuracy compared to existing methods. The code is publicly available at: https://github.com/LemuelPuglisi/BrLP.
Related papers
- Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.
Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.
We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.
Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
Temporally-Aware Diffusion Model (TADM) learns the distribution of structural changes in terms of intensity differences between scans.
During training, we propose to leverage a pre-trained Brain-Age Estimator (BAE) to refine the model's training process.
Our approach will benefit applications, such as predicting patient outcomes or improving treatments for patients.
arXiv Detail & Related papers (2024-06-18T09:00:49Z) - Spatiotemporal Graph Neural Network Modelling Perfusion MRI [12.712005118761516]
Per vascular MRI (pMRI) offers valuable insights into tumority and promises to predict tumor genotypes.
Yet effective models tailored to 4D pMRI are still lacking.
This study presents the first attempt to model 4D pMRI using a GNN-based model.
arXiv Detail & Related papers (2024-06-10T16:24:46Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge [2.7853513988338108]
We introduce Brain LaLAS (BrLP), atemporal disease model based on latent diffusion.
BrLP is designed to predict the evolution of diseases at the individual level on 3D brain progressions MRI.
arXiv Detail & Related papers (2024-05-06T10:07:16Z) - Cas-DiffCom: Cascaded diffusion model for infant longitudinal
super-resolution 3D medical image completion [47.83003164569194]
We propose a two-stage cascaded diffusion model, Cas-DiffCom, for dense and longitudinal 3D infant brain MRI completion and super-resolution.
Experiment results validate that Cas-DiffCom achieves both individual consistency and high fidelity in longitudinal infant brain image completion.
arXiv Detail & Related papers (2024-02-21T12:54:40Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Generative Aging of Brain Images with Diffeomorphic Registration [3.645542167239258]
Analyzing and predicting brain aging is essential for early prognosis and accurate diagnosis of cognitive diseases.
This paper proposes a methodology for generating longitudinal MRI scans that capture subject-specific neurodegeneration and retain anatomical plausibility in aging.
arXiv Detail & Related papers (2022-05-31T08:37:24Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.