CurvGAD: Leveraging Curvature for Enhanced Graph Anomaly Detection
- URL: http://arxiv.org/abs/2502.08605v2
- Date: Wed, 04 Jun 2025 20:09:51 GMT
- Title: CurvGAD: Leveraging Curvature for Enhanced Graph Anomaly Detection
- Authors: Karish Grover, Geoffrey J. Gordon, Christos Faloutsos,
- Abstract summary: We propose CurvGAD - a mixed-curvature graph autoencoder that introduces the notion of curvature-based geometric anomalies.<n>CurvGAD introduces two parallel pipelines for enhanced anomaly interpretability.<n>Experiments over 10 real-world datasets demonstrate an improvement of up to 6.5% over state-of-the-art GAD methods.
- Score: 23.643189106137008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Does the intrinsic curvature of complex networks hold the key to unveiling graph anomalies that conventional approaches overlook? Reconstruction-based graph anomaly detection (GAD) methods overlook such geometric outliers, focusing only on structural and attribute-level anomalies. To this end, we propose CurvGAD - a mixed-curvature graph autoencoder that introduces the notion of curvature-based geometric anomalies. CurvGAD introduces two parallel pipelines for enhanced anomaly interpretability: (1) Curvature-equivariant geometry reconstruction, which focuses exclusively on reconstructing the edge curvatures using a mixed-curvature, Riemannian encoder and Gaussian kernel-based decoder; and (2) Curvature-invariant structure and attribute reconstruction, which decouples structural and attribute anomalies from geometric irregularities by regularizing graph curvature under discrete Ollivier-Ricci flow, thereby isolating the non-geometric anomalies. By leveraging curvature, CurvGAD refines the existing anomaly classifications and identifies new curvature-driven anomalies. Extensive experimentation over 10 real-world datasets (both homophilic and heterophilic) demonstrates an improvement of up to 6.5% over state-of-the-art GAD methods. The code is available at: https://github.com/karish-grover/curvgad.
Related papers
- Adaptive Riemannian Graph Neural Networks [29.859977834688625]
We introduce a novel framework that learns a continuous and anisotropic metric tensor field over the graph.<n>It allows each node to determine its optimal local geometry, enabling the model to fluidly adapt to the graph's structural landscape.<n>Our method demonstrates superior performance on both homophilic and heterophilic benchmark geometries.
arXiv Detail & Related papers (2025-08-04T16:55:02Z) - Graph Evidential Learning for Anomaly Detection [19.046244103954855]
We propose Graph Evidential Learning (GEL) to redefine the reconstruction process through evidential learning.<n>GEL quantifies two types of uncertainty: graph uncertainty and reconstruction uncertainty, incorporating them into the anomaly scoring mechanism.<n>GEL achieves state-of-the-art performance while maintaining high robustness against noise and structural perturbations.
arXiv Detail & Related papers (2025-05-31T15:06:42Z) - Spectro-Riemannian Graph Neural Networks [39.901731107377095]
We propose the first graph representation learning paradigm that unifies CUrvature (geometric) and SPectral insights.<n>Cusp Laplacian is an extension of the traditional graph Laplacian based on Ollivier-Ricci curvature.<n>Cusp Pooling is a hierarchical attention mechanism combined with a curvature-based positional encoding.<n> Empirical evaluation across eight homophilic and heterophilic datasets demonstrates the superiority of CUSP in node classification and link prediction tasks.
arXiv Detail & Related papers (2025-02-01T11:31:01Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for
Alleviating Over-squashing [72.70197960100677]
Graph Structure Learning (GSL) plays an important role in boosting Graph Neural Networks (GNNs) with a refined graph.
GSL solutions usually focus on structure refinement with task-specific supervision (i.e., node classification) or overlook the inherent weakness of GNNs themselves.
We propose to study self-supervised graph structure-feature co-refinement for effectively alleviating the issue of over-squashing in typical GNNs.
arXiv Detail & Related papers (2024-01-23T14:06:08Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
We propose a generalization of Transformers towards operating entirely on the product of constant curvature spaces.
We also provide a kernelized approach to non-Euclidean attention, which enables our model to run in time and memory cost linear to the number of nodes and edges.
arXiv Detail & Related papers (2023-09-08T02:44:37Z) - How Curvature Enhance the Adaptation Power of Framelet GCNs [27.831929635701886]
Graph neural network (GNN) has been demonstrated powerful in modeling graph-structured data.
This paper introduces a new approach to enhance GNN by discrete graph Ricci curvature.
We show that our curvature-based GNN model outperforms the state-of-the-art baselines in both homophily and heterophily graph datasets.
arXiv Detail & Related papers (2023-07-19T06:05:33Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Curved Geometric Networks for Visual Anomaly Recognition [39.91252195360767]
Learning a latent embedding to understand the underlying nature of data distribution is often formulated in Euclidean spaces with zero curvature.
In this work, we investigate benefits of the curved space for analyzing anomalies or out-of-distribution objects in data.
arXiv Detail & Related papers (2022-08-02T01:15:39Z) - Curvature Graph Generative Adversarial Networks [31.763904668737304]
Generative adversarial network (GAN) is widely used for generalized and robust learning on graph data.
Existing GAN-based graph representation methods generate negative samples by random walk or traverse in discrete space.
CurvGAN consistently and significantly outperforms the state-of-the-art methods across multiple tasks.
arXiv Detail & Related papers (2022-03-03T10:00:32Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs)
We propose Gauge Equivariant Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels.
Our experiments validate the significantly improved expressivity of the proposed model over conventional GCNs and other methods.
arXiv Detail & Related papers (2020-03-11T17:21:15Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks.
We introduce windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets.
We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts.
arXiv Detail & Related papers (2019-11-14T17:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.