論文の概要: Semantic Role Labeling: A Systematical Survey
- arxiv url: http://arxiv.org/abs/2502.08660v2
- Date: Wed, 19 Feb 2025 06:32:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:56:30.450606
- Title: Semantic Role Labeling: A Systematical Survey
- Title(参考訳): セマンティック・ロール・ラベル:システマティック・サーベイ
- Authors: Huiyao Chen, Meishan Zhang, Jing Li, Min Zhang, Lilja Øvrelid, Jan Hajič, Hao Fei,
- Abstract要約: セマンティック・ロール・ラベリング(Semantic Role labeling, SRL)は、テキスト中のセマンティック・ロールを理解することを目的とした自然言語処理(NLP)タスクである。
現在、この分野を徹底的に整理し、合成する総合的な調査が欠落している。
本稿では,過去20年間のSRL研究の軌跡を概観する。
- 参考スコア(独自算出の注目度): 43.51170121441664
- License:
- Abstract: Semantic role labeling (SRL) is a central natural language processing (NLP) task aiming to understand the semantic roles within texts, facilitating a wide range of downstream applications. While SRL has garnered extensive and enduring research, there is currently a lack of a comprehensive survey that thoroughly organizes and synthesizes the field. This paper aims to review the entire research trajectory of the SRL community over the past two decades. We begin by providing a complete definition of SRL. To offer a comprehensive taxonomy, we categorize SRL methodologies into four key perspectives: model architectures, syntax feature modeling, application scenarios, and multi-modal extensions. Further, we discuss SRL benchmarks, evaluation metrics, and paradigm modeling approaches, while also exploring practical applications across various domains. Finally, we analyze future research directions in SRL, addressing the evolving role of SRL in the age of large language models (LLMs) and its potential impact on the broader NLP landscape. We maintain a public repository and consistently update related resources at: https://github.com/DreamH1gh/Awesome-SRL
- Abstract(参考訳): セマンティック・ロール・ラベリング(Semantic Role labeling, SRL)は、テキスト中のセマンティック・ロールを理解することを目的とした自然言語処理(NLP)タスクである。
SRLは広範かつ永続的な研究を行ってきたが、現在、この分野を徹底的に組織化し、合成する包括的な調査は行われていない。
本稿では,過去20年間のSRL研究の軌跡を概観する。
まず、SRLを完全に定義することから始める。
包括的な分類を提供するため、SRL方法論をモデルアーキテクチャ、構文特徴モデリング、アプリケーションシナリオ、マルチモーダル拡張の4つの重要な視点に分類する。
さらに、SRLベンチマーク、評価指標、パラダイムモデリングアプローチについても検討するとともに、様々な領域にわたる実践的応用についても検討する。
最後に,大言語モデル (LLM) の時代におけるSRLの進化的役割と,その広範なNLP景観に対する潜在的影響について,SRLの今後の研究方向を解析する。
公開リポジトリを維持し、関連するリソースを継続的に更新します。
関連論文リスト
- Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
大規模言語モデル(LLM)は、マルチタスク学習、サンプル効率、高レベルのタスク計画といった側面において強化学習(RL)を強化するための有望な道として出現する。
本稿では,情報処理装置,報酬設計装置,意思決定装置,ジェネレータの4つの役割を含む,RLにおけるLLMの機能を体系的に分類する構造的分類法を提案する。
論文 参考訳(メタデータ) (2024-03-30T08:28:08Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
本稿では,RLトレーニングアプリケーションを汎用フレームワークに統合する,RLトレーニングのデータフローに関する新しい抽象化を提案する。
スケーラブルで効率的で分散的なRLシステムであるReaLly scalableRLを開発した。
SRLは15k以上のCPUコアでRL実験を大規模に実施した初めての学術コミュニティである。
論文 参考訳(メタデータ) (2023-06-29T05:16:25Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
我々は,メタRLと呼ばれるプロセスにおいて,機械学習問題自体として,より優れたRLアルゴリズムを開発した。
本稿では,タスク分布の存在と各タスクに利用可能な学習予算に基づいて,高レベルでメタRL研究をクラスタ化する方法について議論する。
RL実践者のための標準ツールボックスにメタRLを組み込むことの道程について,オープンな問題を提示することによって,結論を下す。
論文 参考訳(メタデータ) (2023-01-19T12:01:41Z) - LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement
Learning [78.2286146954051]
LCRLは未知決定プロセス(MDP)上でのモデルフリー強化学習(RL)アルゴリズムを実装している
本稿では,LCRLの適用性,使いやすさ,拡張性,性能を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2022-09-21T13:21:00Z) - Transition-based Semantic Role Labeling with Pointer Networks [0.40611352512781856]
本稿では,1つの左から右へのパスで入力文を完全に処理できる,トランジッションベースのSRLアプローチを提案する。
Pointer Networksをベースとした実装のおかげで、完全なSRLは$O(n2)$で正確かつ効率的に実行できる。
論文 参考訳(メタデータ) (2022-05-20T08:38:44Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
文脈強化学習(cRL)は、このような変化を原則的にモデル化するためのフレームワークを提供する。
我々は,cRLが有意義なベンチマークや一般化タスクに関する構造化推論を通じて,RLのゼロショット一般化の改善にどのように貢献するかを示す。
論文 参考訳(メタデータ) (2022-02-09T15:01:59Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
状態表現学習(SRL)は,複雑な感覚データからタスク関連特徴を低次元状態に符号化する。
我々は、SRLの解釈を改善するために、専門家のデモンストレーションを活用するために、ドメイン類似と呼ばれる新しいSRLを導入する。
我々はPOARを実証的に検証し、高次元のタスクを効率的に処理し、スクラッチから直接実生活ロボットの訓練を容易にする。
論文 参考訳(メタデータ) (2021-09-17T16:52:03Z) - Deep Reinforcement Learning and Transportation Research: A Comprehensive
Review [0.0]
DRLの数学的背景、人気があり有望なDRLアルゴリズム、高効率なDRL拡張について概説する。
本稿では, DRL技術の適用性, 強度, 欠点, 一般, 応用に特有な課題について検討する。
論文 参考訳(メタデータ) (2020-10-13T05:23:11Z) - Syntax Role for Neural Semantic Role Labeling [77.5166510071142]
意味的役割ラベリング(SRL)は、文の意味的述語・代名詞構造を認識することを目的としている。
従来のモデルでは、構文情報はSRLのパフォーマンスに顕著な貢献をする可能性がある。
最近の神経SRL研究は、構文情報は神経意味的役割のラベル付けにおいてはるかに重要でないことを示している。
論文 参考訳(メタデータ) (2020-09-12T07:01:12Z) - RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning [108.9599280270704]
オフラインのRL手法を評価・比較するためのRL Unpluggedというベンチマークを提案する。
RL Unpluggedにはゲームやシミュレートされたモーター制御問題を含むさまざまな領域のデータが含まれている。
本論文で提示した全タスクのデータと,全アルゴリズムをオープンソースとして公開する。
論文 参考訳(メタデータ) (2020-06-24T17:14:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。