論文の概要: Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands
- arxiv url: http://arxiv.org/abs/2502.08678v1
- Date: Wed, 12 Feb 2025 07:01:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:44:43.356161
- Title: Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands
- Title(参考訳): 西オーストラリア農地における雑草検出のためのマルチスペクトルリモートセンシング
- Authors: Haitian Wang, Muhammad Ibrahim, Yumeng Miao, D ustin Severtson, Atif Mansoor, Ajmal S. Mian,
- Abstract要約: オーストラリア西部のコンディニン地域は、広範囲にわたる雑草の寄生による農業上の大きな課題に直面しており、経済的損失と生態学的影響を引き起こしている。
本研究は, 精密農業の実践を促進するため, 雑草検出のための多スペクトルリモートセンシングフレームワークを構築した。
無人航空機は、4年間にわたって2つの実験領域から生のマルチスペクトルデータを収集するために用いられ、0.6046 km2をカバーし、地上の真実の注釈は、手動で雑草や作物をラベル付けするためにGPS対応車両で作成された。
- 参考スコア(独自算出の注目度): 3.6284577335311563
- License:
- Abstract: The Kondinin region in Western Australia faces significant agricultural challenges due to pervasive weed infestations, causing economic losses and ecological impacts. This study constructs a tailored multispectral remote sensing dataset and an end-to-end framework for weed detection to advance precision agriculture practices. Unmanned aerial vehicles were used to collect raw multispectral data from two experimental areas (E2 and E8) over four years, covering 0.6046 km^{2} and ground truth annotations were created with GPS-enabled vehicles to manually label weeds and crops. The dataset is specifically designed for agricultural applications in Western Australia. We propose an end-to-end framework for weed detection that includes extensive preprocessing steps, such as denoising, radiometric calibration, image alignment, orthorectification, and stitching. The proposed method combines vegetation indices (NDVI, GNDVI, EVI, SAVI, MSAVI) with multispectral channels to form classification features, and employs several deep learning models to identify weeds based on the input features. Among these models, ResNet achieves the highest performance, with a weed detection accuracy of 0.9213, an F1-Score of 0.8735, an mIOU of 0.7888, and an mDC of 0.8865, validating the efficacy of the dataset and the proposed weed detection method.
- Abstract(参考訳): オーストラリア西部のコンディニン地域は、広範囲にわたる雑草の寄生による農業上の大きな課題に直面しており、経済的損失と生態学的影響を引き起こしている。
本研究は,マルチスペクトルリモートセンシングデータセットと雑草検出のためのエンドツーエンドフレームワークを構築し,精密農業の実践を推し進める。
無人航空機は4年間にわたって2つの実験領域(E2とE8)から生のマルチスペクトルデータを収集し、0.6046 km^{2}をカバーし、GPS対応の車両で雑草や作物を手動でラベル付けした。
データセットは西オーストラリアの農業用途に特化して設計されている。
本稿では, 除雪, ラジオメトリックキャリブレーション, 画像アライメント, 矯正, 縫合など, 幅広い前処理ステップを含む雑草検出のためのエンドツーエンドフレームワークを提案する。
提案手法は, 植生指標(NDVI, GNDVI, EVI, SAVI, MSAVI)とマルチスペクトルチャネルを結合して分類特徴を定式化し, 入力特徴に基づいて雑草を同定する深層学習モデルを用いて, 植生指標(NDVI, GNDVI, EVI, SAVI, MSAVI)を同定する。
これらのモデルのうち、ResNetは、雑草検出精度が0.9213、F1スコアが0.8735、mIOUが0.7888、mDCが0.8865であり、データセットの有効性と提案された雑草検出方法の有効性を検証している。
関連論文リスト
- WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields [0.7421845364041001]
雑草は作物の収穫が減少する主な原因の1つであるが、現在の雑草の慣行は、効率的で標的とした方法で雑草を管理するのに失敗している。
農作物畑における作物と雑草のセマンティックスとインスタンスセグメンテーションのための新しいデータセットを提案する。
論文 参考訳(メタデータ) (2025-02-18T18:13:19Z) - Towards Efficient and Intelligent Laser Weeding: Method and Dataset for Weed Stem Detection [51.65457287518379]
本研究は,レーザー除草における雑草認識の実証的研究としては初めてである。
我々は,雑草の検出と雑草の局在を1つのエンドツーエンドシステムに統合した。
提案システムは,既存の雑草認識システムと比較して,雑草の精度を6.7%向上し,エネルギーコストを32.3%削減する。
論文 参考訳(メタデータ) (2025-02-10T08:42:46Z) - CMAViT: Integrating Climate, Managment, and Remote Sensing Data for Crop Yield Estimation with Multimodel Vision Transformers [0.0]
我々はCMAViT(Climate-Management Aware Vision Transformer)と呼ばれる深層学習に基づくマルチモデルを導入する。
CMAViTは、リモートセンシング画像と短期気象データを活用することにより、空間データと時間データの両方を統合する。
UNet-ConvLSTMのような従来のモデルよりも優れ、空間的変動のキャプチャと収差予測に優れています。
論文 参考訳(メタデータ) (2024-11-25T23:34:53Z) - RoWeeder: Unsupervised Weed Mapping through Crop-Row Detection [8.94249680213101]
RoWeederは、教師なし雑草マッピングのための革新的なフレームワークである。
クロップロー検出とノイズ耐性の深いディープラーニングモデルを組み合わせる。
RoWeederとドローン技術を統合することで、農家はリアルタイムで空中調査を行うことができる。
論文 参考訳(メタデータ) (2024-10-07T12:26:22Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
畳み込みニューラルネットワーク(CNN)を用いた新しい深層学習手法を提案する。
高度に乾燥したプランテーション構成を考慮した植物を数えながら、同時にプランテーション・ロウを検出し、配置する。
提案手法は、異なる種類の作物のUAV画像において、植物と植物をカウントおよびジオロケートするための最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-12-31T18:51:17Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Weed Density and Distribution Estimation for Precision Agriculture using
Semi-Supervised Learning [0.0]
雑草密度と分布のロバストな推定のための深層学習に基づく半教師付き手法を提案する。
本研究では、作物や雑草を含む前景の植生画素を、畳み込みニューラルネットワーク(CNN)に基づく教師なしセグメンテーションを用いて最初に同定する。
雑草感染地域は、細調整されたCNNを用いて識別され、手作りの特徴を設計する必要がなくなる。
論文 参考訳(メタデータ) (2020-11-04T09:35:53Z) - Collaborative Training between Region Proposal Localization and
Classification for Domain Adaptive Object Detection [121.28769542994664]
オブジェクト検出のためのドメイン適応は、ラベル付きデータセットからラベル付きデータセットへの検出を適応させようとする。
本稿では,地域提案ネットワーク (RPN) と地域提案分類器 (RPC) が,大きなドメインギャップに直面した場合の転送可能性が大きく異なることを初めて明らかにする。
論文 参考訳(メタデータ) (2020-09-17T07:39:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。