Efficient Split Learning LSTM Models for FPGA-based Edge IoT Devices
- URL: http://arxiv.org/abs/2502.08692v1
- Date: Wed, 12 Feb 2025 15:51:39 GMT
- Title: Efficient Split Learning LSTM Models for FPGA-based Edge IoT Devices
- Authors: Romina Soledad Molina, Vukan Ninkovic, Dejan Vukobratovic, Maria Liz Crespo, Marco Zennaro,
- Abstract summary: Split Learning (SL) is an efficient paradigm for distributed Machine Learning (ML) suitable for the Internet Of Things (IoT)-Cloud systems.
deploying SL on resource-constrained edge IoT platforms poses a significant challenge in terms of balancing the model performance against the processing, memory, and energy resources.
We present a practical study of deploying SL framework on a real-world Field-Programmable Gate Array (FPGA)-based edge IoT platform.
- Score: 4.788487793976781
- License:
- Abstract: Split Learning (SL) recently emerged as an efficient paradigm for distributed Machine Learning (ML) suitable for the Internet Of Things (IoT)-Cloud systems. However, deploying SL on resource-constrained edge IoT platforms poses a significant challenge in terms of balancing the model performance against the processing, memory, and energy resources. In this work, we present a practical study of deploying SL framework on a real-world Field-Programmable Gate Array (FPGA)-based edge IoT platform. We address the SL framework applied to a time-series processing model based on Recurrent Neural Networks (RNNs). Set in the context of river water quality monitoring and using real-world data, we train, optimize, and deploy a Long Short-Term Memory (LSTM) model on a given edge IoT FPGA platform in different SL configurations. Our results demonstrate the importance of aligning design choices with specific application requirements, whether it is maximizing speed, minimizing power, or optimizing for resource constraints.
Related papers
- Federated Split Learning with Model Pruning and Gradient Quantization in Wireless Networks [7.439160287320074]
Federated split learning (FedSL) implements collaborative training across the edge devices and the server through model splitting.
We propose a lightweight FedSL scheme, that further alleviates the training burden on resource-constrained edge devices.
We conduct theoretical analysis to quantify the convergence performance of the proposed scheme.
arXiv Detail & Related papers (2024-12-09T11:43:03Z) - WDMoE: Wireless Distributed Mixture of Experts for Large Language Models [68.45482959423323]
Large Language Models (LLMs) have achieved significant success in various natural language processing tasks.
We propose a wireless distributed Mixture of Experts (WDMoE) architecture to enable collaborative deployment of LLMs across edge servers at the base station (BS) and mobile devices in wireless networks.
arXiv Detail & Related papers (2024-11-11T02:48:00Z) - Flextron: Many-in-One Flexible Large Language Model [85.93260172698398]
We introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment.
We present a sample-efficient training method and associated routing algorithms for transforming an existing trained LLM into a Flextron model.
We demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.
arXiv Detail & Related papers (2024-06-11T01:16:10Z) - AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks [15.195798715517315]
Split federated learning (SFL) is a promising solution by of floading the primary training workload to a server via model partitioning.
We propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems.
arXiv Detail & Related papers (2024-03-19T19:05:24Z) - Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment [8.30319294116657]
Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks.
Training these models can incur significant expenses, often requiring tens of thousands of GPU for months of continuous operation.
We introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment.
arXiv Detail & Related papers (2023-12-06T15:27:26Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Evaluation and Optimization of Distributed Machine Learning Techniques
for Internet of Things [34.544836653715244]
Federated learning (FL) and split learning (SL) are state-of-the-art distributed machine learning techniques.
Recent FL and SL are combined to form splitfed learning (SFL) to leverage each of their benefits.
This work considers FL, SL, and SFL, and mount them on Raspberry Pi devices to evaluate their performance.
arXiv Detail & Related papers (2021-03-03T23:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.