論文の概要: Are Expressions for Music Emotions the Same Across Cultures?
- arxiv url: http://arxiv.org/abs/2502.08744v1
- Date: Wed, 12 Feb 2025 19:35:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:44:48.896107
- Title: Are Expressions for Music Emotions the Same Across Cultures?
- Title(参考訳): 音楽の感情表現は文化的に同じか?
- Authors: Elif Celen, Pol van Rijn, Harin Lee, Nori Jacoby,
- Abstract要約: 音楽の感情に関する異文化間研究における重要な課題は、選択のバイアスと手作業によるキュレーションである。
ブラジル、米国、韓国で9つのオンライン実験を行い、N=672人の参加者を巻き込んだバランスの取れた実験設計を提案する。
その結果、高い刺激的、高い普遍性感情において一貫性を示すが、他では大きな変動性を示す。
- 参考スコア(独自算出の注目度): 12.481680637841045
- License:
- Abstract: Music evokes profound emotions, yet the universality of emotional descriptors across languages remains debated. A key challenge in cross-cultural research on music emotion is biased stimulus selection and manual curation of taxonomies, predominantly relying on Western music and languages. To address this, we propose a balanced experimental design with nine online experiments in Brazil, the US, and South Korea, involving N=672 participants. First, we sample a balanced set of popular music from these countries. Using an open-ended tagging pipeline, we then gather emotion terms to create culture-specific taxonomies. Finally, using these bottom-up taxonomies, participants rate emotions of each song. This allows us to map emotional similarities within and across cultures. Results show consistency in high arousal, high valence emotions but greater variability in others. Notably, machine translations were often inadequate to capture music-specific meanings. These findings together highlight the need for a domain-sensitive, open-ended, bottom-up emotion elicitation approach to reduce cultural biases in emotion research.
- Abstract(参考訳): 音楽は深い感情を引き起こすが、言語間の感情的な記述の普遍性については議論が続いている。
音楽感情に関する異文化間研究における重要な課題は、主に西洋音楽や言語に依存している分類学の刺激選択と手作業によるキュレーションである。
そこで本研究では,N=672人を対象に,ブラジル,米国,韓国の9つのオンライン実験によるバランスの取れた実験設計を提案する。
まず、これらの国々のポピュラー音楽のバランスのとれたセットをサンプリングする。
オープンなタグ付けパイプラインを使用して、感情用語を収集して、文化固有の分類語を作成します。
最後に、これらのボトムアップ分類を用いて、参加者はそれぞれの歌の感情を評価する。
これにより、文化内の感情的な類似点をマップできます。
その結果,高刺激,高原子価感情では一貫性が認められたが,他では大きな変動性を示した。
特に、機械翻訳は、しばしば音楽特有の意味を捉えるのに不十分であった。
これらの知見は共に、感情研究における文化的バイアスを減らすために、ドメインに敏感でオープンなボトムアップ感情誘発アプローチの必要性を強調している。
関連論文リスト
- Exploring and Applying Audio-Based Sentiment Analysis in Music [0.0]
音楽的感情を解釈する計算モデルの能力は、ほとんど解明されていない。
本研究は,(1)音楽クリップの感情を時間とともに予測し,(2)時系列の次の感情値を決定し,シームレスな遷移を保証することを目的とする。
論文 参考訳(メタデータ) (2024-02-22T22:34:06Z) - MusER: Musical Element-Based Regularization for Generating Symbolic
Music with Emotion [16.658813060879293]
本稿では,音楽的要素に基づく正則化を潜在空間に導入し,異なる要素をアンタングルする手法を提案する。
潜在空間を可視化することにより、 MusER は非絡み合いで解釈可能な潜在空間が得られると結論付ける。
実験の結果,MusERは感情音楽を生成する最先端のモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-12-16T03:50:13Z) - Are Words Enough? On the semantic conditioning of affective music
generation [1.534667887016089]
このスコーピングレビューは、感情によって条件付けられた音楽生成の可能性を分析し、議論することを目的としている。
本稿では,ルールベースモデルと機械学習モデルという,自動音楽生成において採用される2つの主要なパラダイムについて概観する。
音楽を通して感情を表現する言葉の限界とあいまいさを克服することは、創造産業に影響を及ぼす可能性があると結論付けている。
論文 参考訳(メタデータ) (2023-11-07T00:19:09Z) - Where are We in Event-centric Emotion Analysis? Bridging Emotion Role
Labeling and Appraisal-based Approaches [10.736626320566707]
テキストにおける感情分析という用語は、様々な自然言語処理タスクを仮定する。
感情と出来事は2つの方法で関連していると我々は主張する。
我々は,NLPモデルに心理的評価理論を組み込んで事象を解釈する方法について議論する。
論文 参考訳(メタデータ) (2023-09-05T09:56:29Z) - Why Do You Feel This Way? Summarizing Triggers of Emotions in Social
Media Posts [61.723046082145416]
CovidET (Emotions and their Triggers during Covid-19)は、COVID-19に関連する英国のReddit投稿1,900件のデータセットである。
我々は、感情を共同で検出し、感情のトリガーを要約する強力なベースラインを開発する。
分析の結果,コビデットは感情特異的要約における新たな課題と,長文のソーシャルメディア投稿におけるマルチ感情検出の課題が示唆された。
論文 参考訳(メタデータ) (2022-10-22T19:10:26Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Emotion-Based End-to-End Matching Between Image and Music in
Valence-Arousal Space [80.49156615923106]
イメージと音楽に類似した感情を合わせることは、感情の知覚をより鮮明で強くするのに役立つ。
既存の感情に基づく画像と音楽のマッチング手法では、限られたカテゴリーの感情状態を使用するか、非現実的なマルチステージパイプラインを使用してマッチングモデルを訓練する。
本稿では,連続的原子価覚醒空間(VA)における感情に基づく画像と音楽のエンドツーエンドマッチングについて検討する。
論文 参考訳(メタデータ) (2020-08-22T20:12:23Z) - PO-EMO: Conceptualization, Annotation, and Modeling of Aesthetic
Emotions in German and English Poetry [26.172030802168752]
我々は、詩の中の感情を、文章で表現されるものや著者が意図するものよりも、読者に誘惑されるものとして考える。
我々は,読者の審美的評価を予測可能な審美感情の集合を概念化し,各行に複数ラベルの注釈を付けることで,その文脈内での混合感情を捉えることができる。
論文 参考訳(メタデータ) (2020-03-17T13:54:48Z) - Annotation of Emotion Carriers in Personal Narratives [69.07034604580214]
我々は、個人的物語(PN) - 話されたり書かれたり - 事実、出来事、思考の記憶 - を理解する問題に興味を持っている。
PNでは、感情担体(英: emotion carriers)は、ユーザの感情状態を最もよく説明する音声またはテキストセグメントである。
本研究は,音声対話における感情担持者を特定するためのアノテーションモデルを提案し,評価する。
論文 参考訳(メタデータ) (2020-02-27T15:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。