論文の概要: Exploring Cultural Nuances in Emotion Perception Across 15 African Languages
- arxiv url: http://arxiv.org/abs/2503.19642v1
- Date: Tue, 25 Mar 2025 13:30:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:50:10.610241
- Title: Exploring Cultural Nuances in Emotion Perception Across 15 African Languages
- Title(参考訳): 15のアフリカ諸言語における感情知覚における文化的ニュアンスを探る
- Authors: Ibrahim Said Ahmad, Shiran Dudy, Tadesse Destaw Belay, Idris Abdulmumin, Seid Muhie Yimam, Shamsuddeen Hassan Muhammad, Kenneth Church,
- Abstract要約: アフリカ15言語における感情表現の言語間比較分析
感情表現の4つの重要な側面として,テキスト長,感情極性,感情共起,強度変動について検討した。
ナイジェリアの言語では、IsiXhosaのような言語では、ネガティブな感情の頻度が低いのに対し、ネガティブな感情の頻度は低い。
- 参考スコア(独自算出の注目度): 8.894537613998516
- License:
- Abstract: Understanding how emotions are expressed across languages is vital for building culturally-aware and inclusive NLP systems. However, emotion expression in African languages is understudied, limiting the development of effective emotion detection tools in these languages. In this work, we present a cross-linguistic analysis of emotion expression in 15 African languages. We examine four key dimensions of emotion representation: text length, sentiment polarity, emotion co-occurrence, and intensity variations. Our findings reveal diverse language-specific patterns in emotional expression -- with Somali texts typically longer, while others like IsiZulu and Algerian Arabic show more concise emotional expression. We observe a higher prevalence of negative sentiment in several Nigerian languages compared to lower negativity in languages like IsiXhosa. Further, emotion co-occurrence analysis demonstrates strong cross-linguistic associations between specific emotion pairs (anger-disgust, sadness-fear), suggesting universal psychological connections. Intensity distributions show multimodal patterns with significant variations between language families; Bantu languages display similar yet distinct profiles, while Afroasiatic languages and Nigerian Pidgin demonstrate wider intensity ranges. These findings highlight the need for language-specific approaches to emotion detection while identifying opportunities for transfer learning across related languages.
- Abstract(参考訳): 言語間で感情がどのように表現されるかを理解することは、文化的に認識され、包括的なNLPシステムを構築するのに不可欠である。
しかしながら、アフリカの言語における感情表現は、これらの言語における効果的な感情検出ツールの開発を制限するために研究されている。
本研究では,15のアフリカ言語における感情表現の言語間比較分析を行う。
感情表現の4つの重要な側面として,テキスト長,感情極性,感情共起,強度変動について検討した。
イシズール語やアルジェリア語のような他の言語は、より簡潔な感情表現を示している。
ナイジェリアの言語では、IsiXhosaのような言語では、ネガティブな感情の頻度が低いのに対し、ネガティブな感情の頻度は低い。
さらに、感情共起分析は、特定の感情のペア(不安、嫌悪、悲しみ)の間に強い言語的関連性を示し、普遍的な心理学的つながりを示唆している。
インテンシティ分布は言語族間で大きく異なる多モーダルパターンを示し、バントゥー語は類似しているが異なるプロファイルを示し、アフロアシア語とナイジェリアのピジン語はより広い範囲を示す。
これらの知見は、関連する言語間での伝達学習の機会を特定しながら、感情検出のための言語固有のアプローチの必要性を浮き彫りにした。
関連論文リスト
- BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages [93.92804151830744]
BRIGHTER - 28の異なる言語のマルチラベルデータセットのコレクション。
データ収集とアノテーションプロセスとこれらのデータセット構築の課題について説明する。
BRIGHTERデータセットは、テキストベースの感情認識のギャップを埋めるためのステップであることを示す。
論文 参考訳(メタデータ) (2025-02-17T15:39:50Z) - English Prompts are Better for NLI-based Zero-Shot Emotion
Classification than Target-Language Prompts [17.099269597133265]
たとえデータが異なる言語であっても、英語のプロンプトを使う方が一貫して良いことを示す。
自然言語推論に基づく言語モデルを用いた実験は、データが異なる言語である場合でも、英語のプロンプトを使う方が一貫して良いことを示す。
論文 参考訳(メタデータ) (2024-02-05T17:36:19Z) - Sociolinguistically Informed Interpretability: A Case Study on Hinglish
Emotion Classification [8.010713141364752]
ヒングリッシュ感情分類データセットにおける3つのPLM間の感情予測に対する言語の影響について検討した。
モデルが言語選択と感情表現の関連を学習していることが分かりました。
事前トレーニングにコードミキシングされたデータが存在することで、タスク固有のデータが不足している場合の学習が増大する可能性がある。
論文 参考訳(メタデータ) (2024-02-05T16:05:32Z) - Language-based Valence and Arousal Expressions between the United States and China: a Cross-Cultural Examination [6.122854363918857]
本稿は,Twitter/X(米国)とSina Weibo(中国本土)を比較し,感情表現の文化的差異を考察する。
NRC-VADレキシコンを用いて、両プラットフォームにまたがる感情表現の異なるパターンを同定した。
われわれは、米国ユーザーが中国ユーザーよりも感情的な強さを示すなど、異文化間の大きな差異を明らかにした。
論文 参考訳(メタデータ) (2024-01-10T16:32:25Z) - Multilingual Language Models are not Multicultural: A Case Study in
Emotion [8.73324795579955]
2023年の多言語LMは、文化や言語間の感情表現の相違を反映しているかどうかを考察する。
LMから得られる埋め込みはアングロ中心であり、生成的LMは他言語のプロンプトに応答しても西洋のノルムを反映している。
論文 参考訳(メタデータ) (2023-07-03T21:54:28Z) - Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech
Emotion Recognition [48.29355616574199]
我々は、英語、中国語、カントン語という3つの異なる言語における感情認識の伝達可能性を分析する。
本研究は,異なる言語群と年齢群が特定の音声特徴を必要とすることを結論し,言語間推論を不適切な方法とする。
論文 参考訳(メタデータ) (2023-06-26T08:48:08Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
図形言語は人間のコミュニケーションに浸透するが、NLPでは比較的過小評価されている。
Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili, Yorubaの7つの多様な言語に関するデータセットを作成しました。
我々のデータセットから,各言語は,同じ領域から派生した言語間で最も高い重なり合いを持つ,図形表現の文化的・地域的概念に依存していることが明らかとなった。
全ての言語は、事前学習データと微調整データの可用性を反映した性能の変化により、英語と比較して大きな欠陥がある。
論文 参考訳(メタデータ) (2023-05-25T15:30:31Z) - Comparing Biases and the Impact of Multilingual Training across Multiple
Languages [70.84047257764405]
ダウンストリーム感情分析タスクにおいて,イタリア語,中国語,英語,ヘブライ語,スペイン語のバイアス分析を行う。
我々は、既存の感情バイアスのテンプレートを、人種、宗教、国籍、性別の4つの属性で、イタリア語、中国語、ヘブライ語、スペイン語に適応させる。
以上の結果から,各言語の文化に支配的な集団の嗜好など,バイアス表現の類似性を明らかにした。
論文 参考訳(メタデータ) (2023-05-18T18:15:07Z) - EmoInHindi: A Multi-label Emotion and Intensity Annotated Dataset in
Hindi for Emotion Recognition in Dialogues [44.79509115642278]
我々はHindiにEmoInHindiという大きな会話データセットを作成し、会話におけるマルチラベルの感情と強度の認識を可能にした。
我々は、精神保健と犯罪被害者の法的カウンセリングのために、ウィザード・オブ・オズの方法でデータセットを作成します。
論文 参考訳(メタデータ) (2022-05-27T11:23:50Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。