論文の概要: A Low-Complexity Plug-and-Play Deep Learning Model for Massive MIMO Precoding Across Sites
- arxiv url: http://arxiv.org/abs/2502.08757v1
- Date: Wed, 12 Feb 2025 20:02:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:31.644191
- Title: A Low-Complexity Plug-and-Play Deep Learning Model for Massive MIMO Precoding Across Sites
- Title(参考訳): 大規模MIMOプリコーディングのための低複雑さプラグアンドプレイ深層学習モデル
- Authors: Ali Hasanzadeh Karkan, Ahmed Ibrahim, Jean-François Frigon, François Leduc-Primeau,
- Abstract要約: MMIMO技術は、スペクトル効率とネットワーク容量を向上させることで、無線通信を変革した。
本稿では,既存のアプローチの複雑性問題に対処するための,新しいディープラーニングベースのmMIMOプリコーダを提案する。
- 参考スコア(独自算出の注目度): 5.896656636095934
- License:
- Abstract: Massive multiple-input multiple-output (mMIMO) technology has transformed wireless communication by enhancing spectral efficiency and network capacity. This paper proposes a novel deep learning-based mMIMO precoder to tackle the complexity challenges of existing approaches, such as weighted minimum mean square error (WMMSE), while leveraging meta-learning domain generalization and a teacher-student architecture to improve generalization across diverse communication environments. When deployed to a previously unseen site, the proposed model achieves excellent sum-rate performance while maintaining low computational complexity by avoiding matrix inversions and by using a simpler neural network structure. The model is trained and tested on a custom ray-tracing dataset composed of several base station locations. The experimental results indicate that our method effectively balances computational efficiency with high sum-rate performance while showcasing strong generalization performance in unseen environments. Furthermore, with fine-tuning, the proposed model outperforms WMMSE across all tested sites and SNR conditions while reducing complexity by at least 73$\times$.
- Abstract(参考訳): MMIMO(Massive multiple-input multiple-output)技術は、スペクトル効率とネットワーク容量を向上させることで無線通信を変革した。
本稿では,メタラーニング領域の一般化と教師学生アーキテクチャを活用して,多様な通信環境における一般化を改善するとともに,重み付き平均二乗誤差(WMMSE)などの既存手法の複雑性問題に対処する,深層学習ベースのmMIMOプリコーダを提案する。
従来は見つからなかった場所に配置すると,行列の逆転を回避し,より単純なニューラルネットワーク構造を用いることで,計算複雑性を低く保ちながら,優れた総和率性能が得られる。
このモデルは、いくつかの基地局からなるカスタムレイトレーシングデータセットでトレーニングされ、テストされる。
実験結果から,本手法は計算効率と高和率性能のバランスを効果的に保ちつつ,目立たない環境での強い一般化性能を示した。
さらに、微調整により、提案モデルは、全ての試験されたサイトとSNR条件でWMMSEより優れ、複雑さを73$\times$に低減する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Deep learning enhanced mixed integer optimization: Learning to reduce model dimensionality [0.0]
この研究は、Mixed-Integer Programmingに固有の計算複雑性に対処するフレームワークを導入する。
ディープラーニングを利用することで、MIPインスタンス間の共通構造を特定し、活用する問題固有モデルを構築する。
本稿では,モデルの堅牢性と一般化性を高める合成データを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-17T19:15:13Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Deep unfolding of the weighted MMSE beamforming algorithm [9.518010235273783]
MISOダウンリンクチャネルに対するWMMSEアルゴリズムに対する深部展開の新たな適用法を提案する。
深層展開は、自然に専門家の知識を取り入れており、即時かつしっかりとしたアーキテクチャ選択の利点、トレーニング可能なパラメータの少ないこと、説明可能性の向上がある。
シミュレーションにより、ほとんどの設定において、展開されたWMMSEは、一定回数の反復に対して、WMMSEよりも優れているか、等しく動作することを示す。
論文 参考訳(メタデータ) (2020-06-15T14:51:20Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。