論文の概要: MRUCT: Mixed Reality Assistance for Acupuncture Guided by Ultrasonic Computed Tomography
- arxiv url: http://arxiv.org/abs/2502.08786v1
- Date: Wed, 12 Feb 2025 20:56:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:20.476032
- Title: MRUCT: Mixed Reality Assistance for Acupuncture Guided by Ultrasonic Computed Tomography
- Title(参考訳): MRUCT:超音波CTによる治療支援
- Authors: Yue Yang, Xinkai Wang, Kehong Zhou, Xue Xie, Lifeng Zhu, Aiguo Song, Bruce Daniel,
- Abstract要約: 中国人は筋肉の記憶と触覚フィードバックに頼って針を挿入し、正確な治療ポイントを狙う。
新しい実践者は、しばしば試行錯誤を通じて学び、熟達し、患者の信頼を得るために長年の経験を必要とする。
我々は,超音波計算トモグラフィとMR(Mixed Reality)技術を統合したMRUCTという革新的なシステムを開発した。
- 参考スコア(独自算出の注目度): 16.848723697694137
- License:
- Abstract: Chinese acupuncture practitioners primarily depend on muscle memory and tactile feedback to insert needles and accurately target acupuncture points, as the current workflow lacks imaging modalities and visual aids. Consequently, new practitioners often learn through trial and error, requiring years of experience to become proficient and earn the trust of patients. Medical students face similar challenges in mastering this skill. To address these challenges, we developed an innovative system, MRUCT, that integrates ultrasonic computed tomography (UCT) with mixed reality (MR) technology to visualize acupuncture points in real-time. This system offers offline image registration and real-time guidance during needle insertion, enabling them to accurately position needles based on anatomical structures such as bones, muscles, and auto-generated reference points, with the potential for clinical implementation. In this paper, we outline the non-rigid registration methods used to reconstruct anatomical structures from UCT data, as well as the key design considerations of the MR system. We evaluated two different 3D user interface (3DUI) designs and compared the performance of our system to traditional workflows for both new practitioners and medical students. The results highlight the potential of MR to enhance therapeutic medical practices and demonstrate the effectiveness of the system we developed.
- Abstract(参考訳): 中国では、主に筋肉の記憶と触覚フィードバックに頼って針を挿入し、針先を正確に標的にしている。
結果として、新しい実践者は、しばしば試行錯誤を通じて学び、何年もの経験を積んで、熟達し、患者の信頼を得る必要がある。
医学生は、このスキルを習得する上で同様の課題に直面します。
これらの課題に対処するため,超音波CT(UCT)とMR(Mixed Reality)技術を統合したMRUCTを開発した。
このシステムは、針挿入中のオフライン画像登録とリアルタイムガイダンスを提供し、骨、筋肉、自動生成基準点などの解剖学的構造に基づいて針を正確に位置決めし、臨床実装の可能性を秘めている。
本稿では,UCTデータから解剖学的構造を再構築するための非剛性登録法とMRシステムの設計上の重要な考察について概説する。
我々は,2つの異なる3Dユーザインタフェース(3DUI)の設計を評価し,本システムの性能を,新入生と医学生の双方にとって従来のワークフローと比較した。
以上の結果から, MRの医療実践の向上と, 開発したシステムの有効性が示唆された。
関連論文リスト
- Scalable Evaluation Framework for Foundation Models in Musculoskeletal MRI Bridging Computational Innovation with Clinical Utility [0.0]
本研究は,SAM,MedSAM,SAM2の臨床的影響と翻訳性を評価するための評価枠組みを提案する。
これらのモデルをゼロショットおよび微調整のパラダイムでテストし、多様な解剖学的構造を処理し、臨床的に信頼性の高いバイオマーカーを有効活用する能力を評価した。
論文 参考訳(メタデータ) (2025-01-23T04:41:20Z) - Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations [5.213304732451705]
検索と処理時間の最小化は、重要なシナリオにおける迅速な応答と意思決定を促進する可能性がある。
近年の手法は暗黙的神経機能を利用して医療形状再構築の課題を解決しようとするものである。
論文 参考訳(メタデータ) (2024-09-11T08:44:10Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Automating Catheterization Labs with Real-Time Perception [31.65246126754449]
AutoCBCTは、血管造影スイートとシームレスに統合された視覚認識システムである。
これにより、自動位置決め、ナビゲーション、シミュレートされたテスト実行を備えた新しいワークフローが可能になり、手動操作やインタラクションの必要性がなくなる。
提案システムは, 実験室と臨床室の両方で実施, 研究され, ワークフロー効率が著しく向上した。
論文 参考訳(メタデータ) (2024-03-09T02:05:23Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - User-Driven Research of Medical Note Generation Software [49.85146209418244]
本稿では,医療用ノート生成システム開発における3ラウンドのユーザスタディについて述べる。
参加する臨床医の印象と,システムがどのようにそれらに価値あるものに適合すべきかの視点について論じる。
遠隔医療における3週間のシステムテストについて述べる。
論文 参考訳(メタデータ) (2022-05-05T10:18:06Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
本稿では,時間的生成的対位ネットワーク(GAN)を用いて,隠蔽解剖学を特異性の下で描くことを提案する。
これは、胃内視鏡(Hyper-Kvasir)の生検データを用いて、完全に教師なしの方法で達成される。
また,3次元再構成とカメラモーション推定の基盤となるコンピュータビジョンタスクにおける本手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-03-31T13:14:00Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via
Bayesian Deep Learning [7.535751594024775]
網膜症は、タイムリーに治療されないと、深刻な視覚障害や失明を引き起こす網膜疾患のグループである。
本稿では, 深い分類モデルを用いて, 異常網膜病理を段階的に学習することのできる, 漸進的なクロスドメイン適応手法を提案する。
提案したフレームワークは、6つの公開データセットで評価され、全体的な精度とF1スコアをそれぞれ0.9826と0.9846で達成することで、最先端の競合他社を上回っている。
論文 参考訳(メタデータ) (2021-10-18T13:45:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。