論文の概要: Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2409.07100v1
- Date: Wed, 11 Sep 2024 08:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 15:14:01.429303
- Title: Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations
- Title(参考訳): Meta-learned Implicit Neural Representationによる高速な医用形状再構成
- Authors: Gaia Romana De Paolis, Dimitrios Lenis, Johannes Novotny, Maria Wimmer, Astrid Berg, Theresa Neubauer, Philip Matthias Winter, David Major, Ariharasudhan Muthusami, Gerald Schröcker, Martin Mienkina, Katja Bühler,
- Abstract要約: 検索と処理時間の最小化は、重要なシナリオにおける迅速な応答と意思決定を促進する可能性がある。
近年の手法は暗黙的神経機能を利用して医療形状再構築の課題を解決しようとするものである。
- 参考スコア(独自算出の注目度): 5.213304732451705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient and fast reconstruction of anatomical structures plays a crucial role in clinical practice. Minimizing retrieval and processing times not only potentially enhances swift response and decision-making in critical scenarios but also supports interactive surgical planning and navigation. Recent methods attempt to solve the medical shape reconstruction problem by utilizing implicit neural functions. However, their performance suffers in terms of generalization and computation time, a critical metric for real-time applications. To address these challenges, we propose to leverage meta-learning to improve the network parameters initialization, reducing inference time by an order of magnitude while maintaining high accuracy. We evaluate our approach on three public datasets covering different anatomical shapes and modalities, namely CT and MRI. Our experimental results show that our model can handle various input configurations, such as sparse slices with different orientations and spacings. Additionally, we demonstrate that our method exhibits strong transferable capabilities in generalizing to shape domains unobserved at training time.
- Abstract(参考訳): 解剖学的構造の効率的かつ迅速な再構築は臨床実践において重要な役割を担っている。
検索と処理時間の最小化は、重要なシナリオにおける迅速な応答と意思決定を促進するだけでなく、インタラクティブな手術計画とナビゲーションもサポートする。
近年の手法は暗黙的神経機能を利用して医療形状再構築の課題を解決しようとするものである。
しかし、それらの性能は、リアルタイムアプリケーションにとって重要な指標である一般化と計算時間に悩まされている。
これらの課題に対処するために,メタ学習を活用してネットワークパラメータの初期化を改善することを提案する。
解剖学的形状と形態,すなわちCTとMRIを対象とする3つの公開データセットに対するアプローチについて検討した。
実験結果から,スライスやスパンス,スパンス,スパンス,スパンスなど,様々な入力構成を扱えることがわかった。
さらに,本手法は,トレーニング時に観測されない領域を一般化する上で,強い伝達能力を示すことを示す。
関連論文リスト
- TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories [2.7719338074999547]
本稿では,3次元ウィンドウアテンションとフレキシブルで時間的に拡張可能な獲得軌跡を用いた新しい深部圧縮型センシング手法を提案する。
本手法は既存の手法と比較してトレーニング時間と推論時間を著しく短縮する。
実データによるテストは、我々のアプローチが現在の最先端技術よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-09-19T13:45:13Z) - Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane [58.871015937204255]
変形性組織を再建するための高速直交平面(Fast Orthogonal Plane)を導入する。
我々は外科手術を4Dボリュームとして概念化し、それらをニューラルネットワークからなる静的および動的フィールドに分解する。
この分解により4次元空間が増加し、メモリ使用量が減少し、最適化が高速化される。
論文 参考訳(メタデータ) (2023-12-23T13:27:50Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
肝, 腎, 膵, 脾の分節に対するテンプレートベースのメッシュ再構成法を応用した。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
論文 参考訳(メタデータ) (2023-06-27T14:41:18Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
本稿では,時間的生成的対位ネットワーク(GAN)を用いて,隠蔽解剖学を特異性の下で描くことを提案する。
これは、胃内視鏡(Hyper-Kvasir)の生検データを用いて、完全に教師なしの方法で達成される。
また,3次元再構成とカメラモーション推定の基盤となるコンピュータビジョンタスクにおける本手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-03-31T13:14:00Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本手法は,高分解能,高品質の全心臓再建を実現できる有望な性能を示した。
論文 参考訳(メタデータ) (2021-02-16T00:39:43Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Micro-CT Synthesis and Inner Ear Super Resolution via Generative
Adversarial Networks and Bayesian Inference [3.797382187289074]
既存の医用画像の超解像法は、完全に教師された方法でマッピングを学ぶために、低解像度画像と高解像度画像のペアに依存している。
本稿では,非ペアデータを用いた現実シナリオにおける超解像問題に対処し,時間的骨構造の高分解能マイクロCT画像の合成を行う。
論文 参考訳(メタデータ) (2020-10-27T07:18:34Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。