MRUCT: Mixed Reality Assistance for Acupuncture Guided by Ultrasonic Computed Tomography
- URL: http://arxiv.org/abs/2502.08786v1
- Date: Wed, 12 Feb 2025 20:56:54 GMT
- Title: MRUCT: Mixed Reality Assistance for Acupuncture Guided by Ultrasonic Computed Tomography
- Authors: Yue Yang, Xinkai Wang, Kehong Zhou, Xue Xie, Lifeng Zhu, Aiguo Song, Bruce Daniel,
- Abstract summary: Chinese acupuncture practitioners rely on muscle memory and tactile feedback to insert needles and accurately target acupuncture points.
New practitioners often learn through trial and error, requiring years of experience to become proficient and earn the trust of patients.
We developed an innovative system, MRUCT, that integrates ultrasonic computed tomography with mixed reality (MR) technology to visualize acupuncture points in real-time.
- Score: 16.848723697694137
- License:
- Abstract: Chinese acupuncture practitioners primarily depend on muscle memory and tactile feedback to insert needles and accurately target acupuncture points, as the current workflow lacks imaging modalities and visual aids. Consequently, new practitioners often learn through trial and error, requiring years of experience to become proficient and earn the trust of patients. Medical students face similar challenges in mastering this skill. To address these challenges, we developed an innovative system, MRUCT, that integrates ultrasonic computed tomography (UCT) with mixed reality (MR) technology to visualize acupuncture points in real-time. This system offers offline image registration and real-time guidance during needle insertion, enabling them to accurately position needles based on anatomical structures such as bones, muscles, and auto-generated reference points, with the potential for clinical implementation. In this paper, we outline the non-rigid registration methods used to reconstruct anatomical structures from UCT data, as well as the key design considerations of the MR system. We evaluated two different 3D user interface (3DUI) designs and compared the performance of our system to traditional workflows for both new practitioners and medical students. The results highlight the potential of MR to enhance therapeutic medical practices and demonstrate the effectiveness of the system we developed.
Related papers
- Scalable Evaluation Framework for Foundation Models in Musculoskeletal MRI Bridging Computational Innovation with Clinical Utility [0.0]
This study introduces an evaluation framework for assessing the clinical impact and translatability of SAM, MedSAM, and SAM2.
We tested these models across zero-shot and finetuned paradigms to assess their ability to process diverse anatomical structures and effectuate clinically reliable biomarkers.
arXiv Detail & Related papers (2025-01-23T04:41:20Z) - Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations [5.213304732451705]
Minimizing retrieval and processing times potentially enhances swift response and decision-making in critical scenarios.
Recent methods attempt to solve the medical shape reconstruction problem by utilizing implicit neural functions.
arXiv Detail & Related papers (2024-09-11T08:44:10Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Automating Catheterization Labs with Real-Time Perception [31.65246126754449]
AutoCBCT is a visual perception system seamlessly integrated with an angiography suite.
It enables a novel workflow with automated positioning, navigation and simulated test-runs, eliminating the need for manual operations and interactions.
The proposed system has been successfully deployed and studied in both lab and clinical settings, demonstrating significantly improved workflow efficiency.
arXiv Detail & Related papers (2024-03-09T02:05:23Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - User-Driven Research of Medical Note Generation Software [49.85146209418244]
We present three rounds of user studies carried out in the context of developing a medical note generation system.
We discuss the participating clinicians' impressions and views of how the system ought to be adapted to be of value to them.
We describe a three-week test run of the system in a live telehealth clinical practice.
arXiv Detail & Related papers (2022-05-05T10:18:06Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
We propose using a temporal generative adversarial network (GAN) to inpaint the hidden anatomy under specularities.
This is achieved using in-vivo data of gastric endoscopy (Hyper-Kvasir) in a fully unsupervised manner.
We also assess the effect of our method in computer vision tasks that underpin 3D reconstruction and camera motion estimation.
arXiv Detail & Related papers (2022-03-31T13:14:00Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via
Bayesian Deep Learning [7.535751594024775]
Retinopathy represents a group of retinal diseases that, if not treated timely, can cause severe visual impairments or even blindness.
This paper presents a novel incremental cross-domain adaptation instrument that allows any deep classification model to progressively learn abnormal retinal pathologies.
The proposed framework, evaluated on six public datasets, outperforms the state-of-the-art competitors by achieving an overall accuracy and F1 score of 0.9826 and 0.9846, respectively.
arXiv Detail & Related papers (2021-10-18T13:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.