TLoRA: Tri-Matrix Low-Rank Adaptation of Large Language Models
- URL: http://arxiv.org/abs/2504.18735v1
- Date: Fri, 25 Apr 2025 23:11:10 GMT
- Title: TLoRA: Tri-Matrix Low-Rank Adaptation of Large Language Models
- Authors: Tanvir Islam,
- Abstract summary: TLoRA is a novel tri-matrix low-rank adaptation method.<n>We show that TLoRA achieves comparable performance to existing low-rank methods.
- Score: 0.135975510645475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose TLoRA, a novel tri-matrix low-rank adaptation method that decomposes weight updates into three matrices: two fixed random matrices and one trainable matrix, combined with a learnable, layer-wise scaling factor. This tri-matrix design enables TLoRA to achieve highly efficient parameter adaptation while introducing minimal additional computational overhead. Through extensive experiments on the GLUE benchmark, we demonstrate that TLoRA achieves comparable performance to existing low-rank methods such as LoRA and Adapter-based techniques, while requiring significantly fewer trainable parameters. Analyzing the adaptation dynamics, we observe that TLoRA exhibits Gaussian-like weight distributions, stable parameter norms, and scaling factor variability across layers, further highlighting its expressive power and adaptability. Additionally, we show that TLoRA closely resembles LoRA in its eigenvalue distributions, parameter norms, and cosine similarity of updates, underscoring its ability to effectively approximate LoRA's adaptation behavior. Our results establish TLoRA as a highly efficient and effective fine-tuning method for LLMs, offering a significant step forward in resource-efficient model adaptation.
Related papers
- DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation [32.369133126167085]
We propose a new PEFT scheme called DiffoRA, which is theoretically grounded and enables module-wise adoption of LoRA.<n>At the core of our DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning.<n>Our approach achieves the best model accuracy over all the state-of-the-art baselines across various benchmarks.
arXiv Detail & Related papers (2025-02-13T02:41:34Z) - EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition [2.5269004336032186]
Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA) is a novel PEFT method that decomposes pre-trained weights into magnitude and directional components.<n>EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA.
arXiv Detail & Related papers (2025-01-21T11:42:09Z) - TriAdaptLoRA: Brain-Inspired Triangular Adaptive Low-Rank Adaptation for Parameter-Efficient Fine-Tuning [9.730075039461154]
Fine-tuning Large Language Models (LLMs) is pivotal for achieving optimal performance across diverse downstream tasks.<n>We propose Adaptive Low-Rank Adaptation (TriAdaptLoRA), a novel PEFT framework inspired by neuroscience principles.<n> Experiments conducted on a variety of natural language understanding and generation tasks demonstrate that TriAdaptLoRA consistently outperforms existing PEFT methods.
arXiv Detail & Related papers (2025-01-14T10:51:31Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.<n>Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.<n>We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - Efficient Adaptation of Pre-trained Vision Transformer via Householder Transformation [53.88562288388169]
A common strategy for.
Efficient Fine-Tuning (PEFT) of pre-trained Vision Transformers (ViTs) involves adapting the model to downstream tasks.
We propose a novel PEFT approach inspired by Singular Value Decomposition (SVD) for representing the adaptation matrix.
SVD decomposes a matrix into the product of a left unitary matrix, a diagonal matrix of scaling values, and a right unitary matrix.
arXiv Detail & Related papers (2024-10-30T12:08:30Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - Matrix-Transformation Based Low-Rank Adaptation (MTLoRA): A Brain-Inspired Method for Parameter-Efficient Fine-Tuning [11.037221461758806]
Matrix-Transformation based Low-Rank Adaptation (MTLoRA) is inspired by the idea that the functions of the brain are shaped by its geometric structure.
MTLoRA achieves an overall performance increase of about 1.0% across eight tasks.
arXiv Detail & Related papers (2024-03-12T09:32:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.