論文の概要: Reinforced Large Language Model is a formal theorem prover
- arxiv url: http://arxiv.org/abs/2502.08908v1
- Date: Thu, 13 Feb 2025 02:49:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:48:44.034055
- Title: Reinforced Large Language Model is a formal theorem prover
- Title(参考訳): 強化大言語モデルは形式的定理証明器である
- Authors: Zhiling Luo,
- Abstract要約: 本稿では,事前学習した大規模言語モデルを反復的に最適化する強化学習フレームワークを提案する。
実験結果から, 直接調整したLDMに比べて精度が高いことがわかった。
- 参考スコア(独自算出の注目度): 1.4201023330840752
- License:
- Abstract: To take advantage of Large Language Model in theorem formalization and proof, we propose a reinforcement learning framework to iteratively optimize the pretrained LLM by rolling out next tactics and comparing them with the expected ones. The experiment results show that it helps to achieve a higher accuracy compared with directly fine-tuned LLM.
- Abstract(参考訳): 定理の定式化と証明においてLarge Language Modelを活用するために,我々は,事前学習されたLLMを,次の戦術を展開し,期待する手法と比較することにより反復的に最適化する強化学習フレームワークを提案する。
実験の結果, 直接調整したLDMに比べて精度が高いことがわかった。
関連論文リスト
- DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
大規模言語モデル (LLM) はレコメンデーションシステムにおいて顕著な性能を示した。
LLMと協調モデルのための新しいプラグ・アンド・プレイアライメントフレームワークを提案する。
我々の手法は既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-08-15T15:56:23Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models [0.8133739801185272]
小さい言語モデルと大きい言語モデルの間の推論能力のアライメントは、主にスーパーバイザード・ファイン・チューニング(SFT)を通して行われる。
そこで本研究では,より小さな言語モデルを用いて自己定義する自己記述型指導手法を提案する。
コモンセンスと数学の推論タスクで得られた結果は、このアプローチがドメイン内とドメイン外の両方のシナリオでインストラクションチューニングを著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-01T09:10:27Z) - Towards Optimal Learning of Language Models [124.65669486710992]
言語モデル(LM)の最適学習の理論を提案する。
我々は、最適学習過程における力学の性質を明らかにするために、学習法則という定理を導出した。
我々は、LMの最適学習が、LMのスケーリング法則における係数の改善に起因することを実証的に検証した。
論文 参考訳(メタデータ) (2024-02-27T18:52:19Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - ThinkSum: Probabilistic reasoning over sets using large language models [18.123895485602244]
本稿では,2段階の確率的推論パラダイムであるThinkSumを提案する。
我々は,LLM評価タスクのBIGベンチスイートにおけるThinkSumの可能性とメリットを実証する。
論文 参考訳(メタデータ) (2022-10-04T00:34:01Z) - Proof Artifact Co-training for Theorem Proving with Language Models [4.934817254755007]
PACT(bf Proof bf Artifact bf Co-bf Training)は、カーネルレベルのコトレーニング用証明項から自己教師付きデータを抽出する一般的な手法である。
我々は、Transformer言語モデルによって駆動されるニューラル定理証明器でリーンを計測し、PACTがテスト定理の保留組における成功率を証明する定理を32%から48%に改善することを示す。
論文 参考訳(メタデータ) (2021-02-11T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。