CLEAR: Cluster-based Prompt Learning on Heterogeneous Graphs
- URL: http://arxiv.org/abs/2502.08918v1
- Date: Thu, 13 Feb 2025 03:10:19 GMT
- Title: CLEAR: Cluster-based Prompt Learning on Heterogeneous Graphs
- Authors: Feiyang Wang, Zhongbao Zhang, Junda Ye, Li Sun, Jianzhong Qi,
- Abstract summary: We present CLEAR, a Cluster-based prompt model on heterogeneous graphs.
We align the pretext and downstream tasks to share the same training objective.
Experiments on downstream tasks confirm the superiority of CLEAR.
- Score: 19.956925820094177
- License:
- Abstract: Prompt learning has attracted increasing attention in the graph domain as a means to bridge the gap between pretext and downstream tasks. Existing studies on heterogeneous graph prompting typically use feature prompts to modify node features for specific downstream tasks, which do not concern the structure of heterogeneous graphs. Such a design also overlooks information from the meta-paths, which are core to learning the high-order semantics of the heterogeneous graphs. To address these issues, we propose CLEAR, a Cluster-based prompt LEARNING model on heterogeneous graphs. We present cluster prompts that reformulate downstream tasks as heterogeneous graph reconstruction. In this way, we align the pretext and downstream tasks to share the same training objective. Additionally, our cluster prompts are also injected into the meta-paths such that the prompt learning process incorporates high-order semantic information entailed by the meta-paths. Extensive experiments on downstream tasks confirm the superiority of CLEAR. It consistently outperforms state-of-the-art models, achieving up to 5% improvement on the F1 metric for node classification.
Related papers
- Adaptive Homophily Clustering: Structure Homophily Graph Learning with Adaptive Filter for Hyperspectral Image [21.709368882043897]
Hyperspectral image (HSI) clustering has been a fundamental but challenging task with zero training labels.
In this paper, a homophily structure graph learning with an adaptive filter clustering method (AHSGC) for HSI is proposed.
Our AHSGC contains high clustering accuracy, low computational complexity, and strong robustness.
arXiv Detail & Related papers (2025-01-03T01:54:16Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks [22.775933880072294]
HetGPT is a post-training prompting framework for graph neural networks.
It improves the performance of state-of-the-art HGNNs on semi-supervised node classification.
arXiv Detail & Related papers (2023-10-23T19:35:57Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - Self-supervised Learning for Heterogeneous Graph via Structure
Information based on Metapath [9.757299837675204]
Self-supervised representation learning is a potential approach to tackle this problem.
In this paper, we propose a SElfsupervised learning method for heterogeneous graph via Structure Information based on Metapath.
In order to predict jump number, SESIM uses data itself to generate labels, avoiding time-consuming manual labeling.
arXiv Detail & Related papers (2022-09-09T10:06:18Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.