論文の概要: Dynamic watermarks in images generated by diffusion models
- arxiv url: http://arxiv.org/abs/2502.08927v1
- Date: Thu, 13 Feb 2025 03:23:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:48:29.669629
- Title: Dynamic watermarks in images generated by diffusion models
- Title(参考訳): 拡散モデルによる画像中の動的透かし
- Authors: Yunzhuo Chen, Naveed Akhtar, Nur Al Hasan Haldar, Ajmal Mian,
- Abstract要約: 高忠実度テキストから画像への拡散モデルが視覚コンテンツ生成に革命をもたらしたが、その普及は重大な倫理的懸念を提起している。
本稿では,拡散モデルのための新しい多段階透かしフレームワークを提案する。
我々の研究は、モデルオーナシップの検証と誤用防止のためのスケーラブルなソリューションを提供することで、AI生成コンテンツセキュリティの分野を前進させます。
- 参考スコア(独自算出の注目度): 46.1135899490656
- License:
- Abstract: High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns, including intellectual property protection and the misuse of synthetic media. To address these challenges, we propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source. Our multi-stage watermarking technique involves embedding: (i) a fixed watermark that is localized in the diffusion model's learned noise distribution and, (ii) a human-imperceptible, dynamic watermark in generates images, leveraging a fine-tuned decoder. By leveraging the Structural Similarity Index Measure (SSIM) and cosine similarity, we adapt the watermark's shape and color to the generated content while maintaining robustness. We demonstrate that our method enables reliable source verification through watermark classification, even when the dynamic watermark is adjusted for content-specific variations. Source model verification is enabled through watermark classification. o support further research, we generate a dataset of watermarked images and introduce a methodology to evaluate the statistical impact of watermarking on generated content.Additionally, we rigorously test our framework against various attack scenarios, demonstrating its robustness and minimal impact on image quality. Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
- Abstract(参考訳): 高忠実度テキストから画像への拡散モデルが視覚コンテンツ生成に革命をもたらしたが、その普及は知的財産保護や合成メディアの誤用など、重大な倫理的懸念を提起している。
これらの課題に対処するため、我々は拡散モデルのための新しい多段階透かしフレームワークを提案し、著作権を確立し、生成した画像をソースにトレースする。
私たちのマルチステージ透かし技術は埋め込みを伴います。
一 拡散モデルの学習雑音分布に局在する固定透かし及び
(ii) 微調整デコーダを利用して画像を生成する, 人間の知覚できないダイナミックな透かし。
構造類似度指標(SSIM)とコサイン類似度(cosine similarity)を活用することで,透かしの形状と色を,ロバスト性を維持しつつ生成した内容に適応させる。
本手法は,動的透かしをコンテンツ固有のバリエーションに合わせて調整した場合でも,透かし分類による信頼性の高い情報源検証を可能にすることを実証する。
ソースモデルの検証は、透かし分類によって可能である。
さらに,本研究は,透かし画像のデータセットを作成し,生成されたコンテンツに対する透かしの統計的影響を評価する手法を導入し,また,その堅牢性と画像品質への影響を最小限に抑えながら,様々な攻撃シナリオに対して,我々のフレームワークを厳格に検証する。
我々の研究は、モデルオーナシップの検証と誤用防止のためのスケーラブルなソリューションを提供することで、AI生成コンテンツセキュリティの分野を前進させます。
関連論文リスト
- Image Watermarking of Generative Diffusion Models [42.982489491857145]
拡散モデル自体に透かしの特徴を埋め込む透かし手法を提案する。
本手法は,エンド・ツー・エンド・エンド・プロセスで学習した生成モデルに対して,ペア型透かし抽出器の訓練を可能にする。
高精度な透かし埋め込み/検出を実証し,本手法に埋め込まれた異なる透かしを区別し,生成モデルの区別を行うことが可能であることを示す。
論文 参考訳(メタデータ) (2025-02-12T09:00:48Z) - Spread them Apart: Towards Robust Watermarking of Generated Content [4.332441337407564]
本稿では,生成したコンテンツに透かしを埋め込む手法を提案する。
埋め込みされた透かしは、境界等級の加法摂動に対して頑健であることを保証する。
論文 参考訳(メタデータ) (2025-02-11T09:23:38Z) - On the Coexistence and Ensembling of Watermarks [93.15379331904602]
様々なオープンソースの透かしは、画像の品質と復号性に小さな影響しか与えない。
我々は、アンサンブルがメッセージ全体のキャパシティを向上し、基本モデルを再トレーニングすることなく、キャパシティ、正確性、堅牢性、画像品質の新たなトレードオフを可能にすることを示す。
論文 参考訳(メタデータ) (2025-01-29T00:37:06Z) - RoboSignature: Robust Signature and Watermarking on Network Attacks [0.5461938536945723]
本稿では,モデルが意図した透かしを埋め込む能力を阻害する新たな逆調整攻撃を提案する。
本研究は, 発生システムにおける潜在的な脆弱性を予知し, 防御することの重要性を強調した。
論文 参考訳(メタデータ) (2024-12-22T04:36:27Z) - Trigger-Based Fragile Model Watermarking for Image Transformation Networks [2.38776871944507]
脆弱な透かしでは、微妙な透かしが、改ざん時に透かしが壊れるように、物体に埋め込まれる。
画像変換・生成ネットワークのための新規なトリガ型フラクタモデル透かしシステムを提案する。
私たちのアプローチは、堅牢な透かしとは別として、さまざまなデータセットや攻撃に対して、モデルのソースと整合性を効果的に検証します。
論文 参考訳(メタデータ) (2024-09-28T19:34:55Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARKは、コントラスト学習による堅牢性を高める、第一級の透かし技術である。
本評価の結果,JIGMARKは既存の透かし法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-06T03:31:41Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。