論文の概要: Safe-VAR: Safe Visual Autoregressive Model for Text-to-Image Generative Watermarking
- arxiv url: http://arxiv.org/abs/2503.11324v1
- Date: Fri, 14 Mar 2025 11:45:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:05:34.810289
- Title: Safe-VAR: Safe Visual Autoregressive Model for Text-to-Image Generative Watermarking
- Title(参考訳): Safe-VAR:テキストから画像への生成ウォーターマーキングのための安全なビジュアル自己回帰モデル
- Authors: Ziyi Wang, Songbai Tan, Gang Xu, Xuerui Qiu, Hongbin Xu, Xin Meng, Ming Li, Fei Richard Yu,
- Abstract要約: 自己回帰学習はテキストと画像の生成において支配的なアプローチとなり、高い効率と視覚的品質を提供する。
拡散モデルのために設計された既存の透かし法は、しばしばVARモデルのシーケンシャルな性質に適応するのに苦労する。
自動回帰テキスト・画像生成に特化して設計された最初のウォーターマーキングフレームワークであるSafe-VARを提案する。
- 参考スコア(独自算出の注目度): 18.251123923955397
- License:
- Abstract: With the success of autoregressive learning in large language models, it has become a dominant approach for text-to-image generation, offering high efficiency and visual quality. However, invisible watermarking for visual autoregressive (VAR) models remains underexplored, despite its importance in misuse prevention. Existing watermarking methods, designed for diffusion models, often struggle to adapt to the sequential nature of VAR models. To bridge this gap, we propose Safe-VAR, the first watermarking framework specifically designed for autoregressive text-to-image generation. Our study reveals that the timing of watermark injection significantly impacts generation quality, and watermarks of different complexities exhibit varying optimal injection times. Motivated by this observation, we propose an Adaptive Scale Interaction Module, which dynamically determines the optimal watermark embedding strategy based on the watermark information and the visual characteristics of the generated image. This ensures watermark robustness while minimizing its impact on image quality. Furthermore, we introduce a Cross-Scale Fusion mechanism, which integrates mixture of both heads and experts to effectively fuse multi-resolution features and handle complex interactions between image content and watermark patterns. Experimental results demonstrate that Safe-VAR achieves state-of-the-art performance, significantly surpassing existing counterparts regarding image quality, watermarking fidelity, and robustness against perturbations. Moreover, our method exhibits strong generalization to an out-of-domain watermark dataset QR Codes.
- Abstract(参考訳): 大規模言語モデルにおける自己回帰学習の成功により、高効率と視覚的品質を提供するテキスト・画像生成の主流のアプローチとなった。
しかしながら、視覚的自己回帰(VAR)モデルに対する目に見えない透かしは、誤用防止の重要性にもかかわらず、未発見のままである。
拡散モデルのために設計された既存の透かし法は、しばしばVARモデルのシーケンシャルな性質に適応するのに苦労する。
このギャップを埋めるために,自動回帰テキスト・画像生成に特化して設計された最初の透かしフレームワークであるSafe-VARを提案する。
本研究は,透かし注入のタイミングが生成品質に著しく影響を及ぼし,異なる複雑度の透かしが最適な注入時間を示すことを示した。
そこで本研究では,画像の透かし情報と視覚特性に基づいて最適な透かし埋め込み戦略を動的に決定する適応スケール相互作用モジュールを提案する。
これにより、画像の品質への影響を最小限に抑えつつ、透かしの堅牢性を確保できる。
さらに,画像の内容と透かしパターンの複雑な相互作用を効果的に融合するために,頭部と専門家の混合を統合したクロススケールフュージョン機構を導入する。
実験結果から, Safe-VARは画像品質, 透かしの忠実度, 摂動に対する堅牢性など, 既存の性能を大きく上回っていることがわかった。
さらに,本手法はドメイン外透かしデータセットQRコードへの強い一般化を示す。
関連論文リスト
- Dynamic watermarks in images generated by diffusion models [46.1135899490656]
高忠実度テキストから画像への拡散モデルが視覚コンテンツ生成に革命をもたらしたが、その普及は重大な倫理的懸念を提起している。
本稿では,拡散モデルのための新しい多段階透かしフレームワークを提案する。
我々の研究は、モデルオーナシップの検証と誤用防止のためのスケーラブルなソリューションを提供することで、AI生成コンテンツセキュリティの分野を前進させます。
論文 参考訳(メタデータ) (2025-02-13T03:23:17Z) - IWN: Image Watermarking Based on Idempotency [0.0]
本稿では,画像透かし処理におけるイデオロシティの導入の可能性について検討する。
カラー画像透かしの回復品質向上に焦点をあてたモデルでは,イデオロシティを活用し,画像の可逆性を向上する。
論文 参考訳(メタデータ) (2024-09-29T01:29:34Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking [20.320229647850017]
安定拡散(SD)モデルは一般的に画像合成とパーソナライズされた編集の分野で栄えている。
AIが作成したコンテンツを公開プラットフォームに公開することで、法的および倫理的リスクが高まる可能性がある。
本研究では,透かしを認識不能な構造に適応させる,安全かつ高追従性安定拡散フレームワーク(SafeSD)を提案する。
論文 参考訳(メタデータ) (2024-07-18T05:53:17Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARKは、コントラスト学習による堅牢性を高める、第一級の透かし技術である。
本評価の結果,JIGMARKは既存の透かし法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-06T03:31:41Z) - Diffusion-Based Hierarchical Image Steganography [60.69791384893602]
Hierarchical Image Steganographyは、複数のイメージを単一のコンテナに埋め込むセキュリティとキャパシティを高める新しい方法である。
フローモデルの可逆性とともに拡散モデルの堅牢性を利用する。
この革新的な構造は、コンテナイメージを自律的に生成し、複数の画像やテキストを安全かつ効率的に隠蔽することができる。
論文 参考訳(メタデータ) (2024-05-19T11:29:52Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。