論文の概要: On the Promise for Assurance of Differentiable Neurosymbolic Reasoning Paradigms
- arxiv url: http://arxiv.org/abs/2502.08932v1
- Date: Thu, 13 Feb 2025 03:29:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:50:04.362563
- Title: On the Promise for Assurance of Differentiable Neurosymbolic Reasoning Paradigms
- Title(参考訳): 識別可能なニューロシンボリック推論パラダイムの保証の約束について
- Authors: Luke E. Richards, Jessie Yaros, Jasen Babcock, Coung Ly, Robin Cosbey, Timothy Doster, Cynthia Matuszek,
- Abstract要約: 我々は、データ効率のモデルを作成する新しい手法である、エンド・ツー・エンドの完全微分可能なニューロシンボリックシステムの保証を評価する。
エンド・ツー・エンドのニューロシンボリックな手法は、データ効率を超える保証のユニークな機会を提示する。
- 参考スコア(独自算出の注目度): 9.071347361654931
- License:
- Abstract: To create usable and deployable Artificial Intelligence (AI) systems, there requires a level of assurance in performance under many different conditions. Many times, deployed machine learning systems will require more classic logic and reasoning performed through neurosymbolic programs jointly with artificial neural network sensing. While many prior works have examined the assurance of a single component of the system solely with either the neural network alone or entire enterprise systems, very few works have examined the assurance of integrated neurosymbolic systems. Within this work, we assess the assurance of end-to-end fully differentiable neurosymbolic systems that are an emerging method to create data-efficient and more interpretable models. We perform this investigation using Scallop, an end-to-end neurosymbolic library, across classification and reasoning tasks in both the image and audio domains. We assess assurance across adversarial robustness, calibration, user performance parity, and interpretability of solutions for catching misaligned solutions. We find end-to-end neurosymbolic methods present unique opportunities for assurance beyond their data efficiency through our empirical results but not across the board. We find that this class of neurosymbolic models has higher assurance in cases where arithmetic operations are defined and where there is high dimensionality to the input space, where fully neural counterparts struggle to learn robust reasoning operations. We identify the relationship between neurosymbolic models' interpretability to catch shortcuts that later result in increased adversarial vulnerability despite performance parity. Finally, we find that the promise of data efficiency is typically only in the case of class imbalanced reasoning problems.
- Abstract(参考訳): 使いやすく、デプロイ可能な人工知能(AI)システムを作成するには、多くの異なる条件下でのパフォーマンスを保証する必要がある。
しばしば、デプロイされた機械学習システムは、より古典的な論理と推論を、人工ニューラルネットワークセンサーと共同で行うニューロシンボリックプログラムを通して行う必要がある。
多くの先行研究は、ニューラルネットワーク単独またはエンタープライズシステム全体において、システムの単一コンポーネントの保証を検証してきたが、統合されたニューロシンボリックシステムの保証を検証した研究はほとんどない。
本研究では,データ効率およびより解釈可能なモデルを作成する新しい手法である,エンド・ツー・エンドの完全微分可能なニューロシンボリックシステムの保証を評価する。
本研究は,画像領域と音声領域の両方における分類と推論作業において,エンドツーエンドのニューロシンボリックライブラリであるScallopを用いて実施する。
我々は,逆方向のロバスト性,キャリブレーション,ユーザパフォーマンスの同等性,不整合解をキャッチするための解の解釈可能性を評価する。
エンド・ツー・エンドのニューロシンボリックな手法は、実験結果を通じてデータ効率を超えて保証するユニークな機会を提供するが、ボード全体ではそうではない。
このタイプのニューロシンボリックモデルは、算術演算が定義され、入力空間に高次元性が存在する場合において、完全なニューロシンボリックモデルが頑健な推論操作を学ぶのに苦労している場合において、高い保証を有する。
本研究は,神経記号モデルとショートカットの相互解釈性の関係を同定し,その結果,性能が同等であるにもかかわらず,逆方向の脆弱性が増大することを示した。
最後に、データ効率の約束は、典型的には、クラス不均衡な推論問題の場合のみである。
関連論文リスト
- Neuro-symbolic Learning Yielding Logical Constraints [22.649543443988712]
ニューロシンボリックシステムのエンドツーエンドの学習は、まだ未解決の課題である。
本稿では,ネットワーク,シンボル接地,論理的制約合成を両立させるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-28T12:18:25Z) - Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
ニューロシンボリックAIは、解釈可能性、堅牢性、信頼性を高めるニューラルネットワークとシンボリックアプローチを融合して、有望なパラダイムとして出現する。
最近のニューロシンボリックシステムは、推論と認知能力を備えた協調的な人間-AIシナリオにおいて大きな可能性を示している。
まず, ニューロシンボリックAIアルゴリズムを体系的に分類し, 実行時, メモリ, 計算演算子, 疎結合性, システム特性を実験的に評価し, 解析する。
論文 参考訳(メタデータ) (2024-09-20T01:32:14Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI(NeSy)は、AIシステムの安全なデプロイを保証することを約束している。
ニューラルネットワークとシンボリックコンポーネントを順次トレーニングする既存のパイプラインは、広範なラベリングを必要とする。
新しいアーキテクチャであるNeSyGPTは、生データから象徴的特徴を抽出する視覚言語基盤モデルを微調整する。
論文 参考訳(メタデータ) (2024-02-02T20:33:14Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining [24.641328814546842]
本稿では、フーリエ領域におけるマスク付き自己エンコーディングに基づく神経信号の自己教師付き事前学習フレームワークであるNeuro-BERTを提案する。
本稿では、入力信号の一部をランダムにマスキングし、欠落した情報を予測するFourier Inversion Prediction (FIP)と呼ばれる新しい事前学習タスクを提案する。
提案手法をいくつかのベンチマークデータセットで評価することにより,Neuro-BERTは下流神経関連タスクを大きなマージンで改善することを示す。
論文 参考訳(メタデータ) (2022-04-20T16:48:18Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
本稿では、視覚的手がかりから部分全体階層を表現できるフレームワークであるAgglomeratorについて述べる。
本研究では,SmallNORB,MNIST,FashionMNIST,CIFAR-10,CIFAR-100などの共通データセットを用いて評価を行った。
論文 参考訳(メタデータ) (2022-03-07T10:56:13Z) - Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning [49.6928533575956]
我々は、神経系1と論理系2の間を仲介するために神経推論を用いる。
強靭なストーリー生成とグラウンドド・インストラクション・フォローリングの結果、このアプローチは神経系世代におけるコヒーレンスと精度を高めることができることを示した。
論文 参考訳(メタデータ) (2021-07-06T17:59:49Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Object-based attention for spatio-temporal reasoning: Outperforming
neuro-symbolic models with flexible distributed architectures [15.946511512356878]
適切な帰納的バイアスを持つ完全学習型ニューラルネットワークは,従来のニューラルシンボリックモデルよりもかなり優れた性能を示す。
我々のモデルは、自己意識と学習された「ソフト」オブジェクト中心表現の両方を批判的に利用します。
論文 参考訳(メタデータ) (2020-12-15T18:57:40Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。