論文の概要: Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning
- arxiv url: http://arxiv.org/abs/2107.02794v1
- Date: Tue, 6 Jul 2021 17:59:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 14:04:46.312767
- Title: Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning
- Title(参考訳): 双体系ニューロシンボリック推論を用いた神経シーケンスモデルのコヒーレンスと一貫性の改善
- Authors: Maxwell Nye, Michael Henry Tessler, Joshua B. Tenenbaum, Brenden M.
Lake
- Abstract要約: 我々は、神経系1と論理系2の間を仲介するために神経推論を用いる。
強靭なストーリー生成とグラウンドド・インストラクション・フォローリングの結果、このアプローチは神経系世代におけるコヒーレンスと精度を高めることができることを示した。
- 参考スコア(独自算出の注目度): 49.6928533575956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human reasoning can often be understood as an interplay between two systems:
the intuitive and associative ("System 1") and the deliberative and logical
("System 2"). Neural sequence models -- which have been increasingly successful
at performing complex, structured tasks -- exhibit the advantages and failure
modes of System 1: they are fast and learn patterns from data, but are often
inconsistent and incoherent. In this work, we seek a lightweight, training-free
means of improving existing System 1-like sequence models by adding System
2-inspired logical reasoning. We explore several variations on this theme in
which candidate generations from a neural sequence model are examined for
logical consistency by a symbolic reasoning module, which can either accept or
reject the generations. Our approach uses neural inference to mediate between
the neural System 1 and the logical System 2. Results in robust story
generation and grounded instruction-following show that this approach can
increase the coherence and accuracy of neurally-based generations.
- Abstract(参考訳): 人間の推論はしばしば、直感的かつ連想的(system 1)と意図的かつ論理的(system 2)の2つのシステム間の相互作用として理解される。
複雑で構造化されたタスクの実行にますます成功しているニューラルシーケンスモデルは、システム1のメリットと障害モードを示している。
そこで本研究では,System 2にインスパイアされた論理的推論を加えることで,既存のSystem 1のようなシーケンスモデルを改善する軽量でトレーニング不要な方法を模索する。
そこで本研究では,神経シーケンスモデルからの候補生成を記号的推論モジュールを用いて論理的一貫性について検討する。
我々のアプローチでは、神経系1と論理系2の間を仲介するために神経推論を用いる。
その結果、ロバストなストーリー生成とグラウンドド・インストラクション・フォローの結果、このアプローチは神経系世代の一貫性と正確性を高めることができる。
関連論文リスト
- Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
我々は、部分的に観測された力学系の制御方程式を学習するために、ハイブリッドニューラルネットワークODE構造を用いる。
本手法は, 観測されていない状態の真の支配方程式の学習に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-29T10:28:14Z) - Improving Neural-based Classification with Logical Background Knowledge [0.0]
本稿では,提案する背景知識を用いた教師付きマルチラベル分類のための新しい定式化を提案する。
推論時に意味条件付けと呼ばれる新しいニューロシンボリック手法を導入する。
本稿では、他の2つの一般的なニューロシンボリック技術に対する理論的および実践的優位性について論じる。
論文 参考訳(メタデータ) (2024-02-20T14:01:26Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
本稿では,ニューロシンボリックシステムに対する望ましい基準のリストを提案し,既存のアプローチのいくつかがこれらの基準にどう対処するかを検討する。
次に、等価なニューラルアーキテクチャの作成を可能にするアノテーション付き一般化論理の拡張を提案する。
トレーニングプロセスの継続的な最適化に依存する従来のアプローチとは異なり、当社のフレームワークは、離散最適化を使用する二項化ニューラルネットワークとして設計されている。
論文 参考訳(メタデータ) (2023-02-23T17:39:46Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Explanatory models in neuroscience: Part 2 -- constraint-based
intelligibility [8.477619837043214]
計算モデリングは神経科学においてますます重要な役割を担い、モデルがどのように説明するかという哲学的な疑問を浮き彫りにしている。
生物学的システムでは、これらの依存関係の多くは自然に「トップダウン」である
NNモデルの構築に使用される最適化手法が,これらの依存関係のいくつかの重要な側面をいかに捉えているかを示す。
論文 参考訳(メタデータ) (2021-04-03T22:14:01Z) - A multi-agent model for growing spiking neural networks [0.0]
このプロジェクトでは、学習メカニズムとして、スパイキングニューラルネットワークのニューロン間の接続を拡大するためのルールについて検討している。
シミュレーション環境での結果は、与えられたパラメータセットに対して、テストされた関数を再現するトポロジに到達可能であることを示した。
このプロジェクトはまた、モデルパラメーターに最適な値を得るために、遺伝的アルゴリズムのようなテクニックを使用するための扉を開く。
論文 参考訳(メタデータ) (2020-09-21T15:11:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。