論文の概要: Biologically Plausible Brain Graph Transformer
- arxiv url: http://arxiv.org/abs/2502.08958v1
- Date: Thu, 13 Feb 2025 04:51:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:49:50.287510
- Title: Biologically Plausible Brain Graph Transformer
- Title(参考訳): 生体可塑性脳グラフ変換器
- Authors: Ciyuan Peng, Yuelong Huang, Qichao Dong, Shuo Yu, Feng Xia, Chengqi Zhang, Yaochu Jin,
- Abstract要約: 最先端の脳グラフ分析手法は、脳グラフの小さな世界のアーキテクチャを完全にエンコードすることができない。
本稿では,脳グラフに固有の小世界構造をエンコードするBioBGT(Biologically Plausible Brain Graph Transformer)を提案する。
- 参考スコア(独自算出の注目度): 29.25619892737193
- License:
- Abstract: State-of-the-art brain graph analysis methods fail to fully encode the small-world architecture of brain graphs (accompanied by the presence of hubs and functional modules), and therefore lack biological plausibility to some extent. This limitation hinders their ability to accurately represent the brain's structural and functional properties, thereby restricting the effectiveness of machine learning models in tasks such as brain disorder detection. In this work, we propose a novel Biologically Plausible Brain Graph Transformer (BioBGT) that encodes the small-world architecture inherent in brain graphs. Specifically, we present a network entanglement-based node importance encoding technique that captures the structural importance of nodes in global information propagation during brain graph communication, highlighting the biological properties of the brain structure. Furthermore, we introduce a functional module-aware self-attention to preserve the functional segregation and integration characteristics of brain graphs in the learned representations. Experimental results on three benchmark datasets demonstrate that BioBGT outperforms state-of-the-art models, enhancing biologically plausible brain graph representations for various brain graph analytical tasks
- Abstract(参考訳): 最先端の脳グラフ分析法は、(ハブや機能モジュールの存在に伴う)脳グラフの小さな世界のアーキテクチャを完全にエンコードすることができないため、ある程度の生物学的な妥当性が欠如している。
この制限は、脳の構造的および機能的性質を正確に表現する能力を妨げるため、脳障害検出などのタスクにおける機械学習モデルの有効性を制限する。
本研究では,脳グラフに固有の小世界構造をエンコードするBioBGT (Biologically Plausible Brain Graph Transformer) を提案する。
具体的には、脳グラフ通信におけるグローバル情報伝達におけるノードの構造的重要性を捉え、脳構造の生物学的性質を強調させる、ネットワーク絡み合いに基づくノード重要符号化手法を提案する。
さらに,学習表現における脳グラフの機能的分離と統合特性を維持するために,機能的モジュール認識型自己アテンションを導入する。
3つのベンチマークデータセットによる実験結果から、BioBGTは最先端のモデルより優れており、様々な脳グラフ解析タスクのための生物学的に妥当な脳グラフ表現を向上していることが示された。
関連論文リスト
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - TiBGL: Template-induced Brain Graph Learning for Functional Neuroimaging
Analysis [27.23929515170454]
本稿ではテンプレート誘発脳グラフ学習(TiBGL)と呼ばれる新しい脳グラフ学習フレームワークを提案する。
TiBGLには識別能力と解釈能力がある。
3つの実世界のデータセットによる実験結果から,提案したTiBGLは,9つの最先端手法と比較して優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-14T15:17:42Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
既存のfMRIベースの脳デコードのための機械学習手法は、分類性能が低いか、説明性が悪いかのいずれかに悩まされている。
本稿では,機能的脳活動の時空間グラフ表現を捉えるために,生物学的にインスパイアされたアーキテクチャである時空間ピラミドグラフ畳み込みネットワーク(STpGCN)を提案する。
我々は,Human Connectome Project (HCP) S1200から23の認知タスク下でのfMRIデータに関する広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-08T12:14:33Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning
and Neuroscience (VesselGraph) [3.846749674808336]
本稿では,特定の画像プロトコルに基づく脳血管グラフの拡張可能なデータセットを提案する。
我々は,血管予測と血管分類の生物学的タスクについて,最先端のグラフ学習アルゴリズムを多数ベンチマークした。
我々の研究は、神経科学の分野におけるグラフ学習研究の進展への道を開いた。
論文 参考訳(メタデータ) (2021-08-30T13:40:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。