論文の概要: RLSA-PFL: Robust Lightweight Secure Aggregation with Model Inconsistency Detection in Privacy-Preserving Federated Learning
- arxiv url: http://arxiv.org/abs/2502.08989v1
- Date: Thu, 13 Feb 2025 06:01:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:49:11.434790
- Title: RLSA-PFL: Robust Lightweight Secure Aggregation with Model Inconsistency Detection in Privacy-Preserving Federated Learning
- Title(参考訳): RLSA-PFL:プライバシ保護フェデレーション学習におけるモデル不整合検出によるロバスト軽量セキュアアグリゲーション
- Authors: Nazatul H. Sultan, Yan Bo, Yansong Gao, Seyit Camtepe, Arash Mahboubi, Hang Thanh Bui, Aufeef Chauhan, Hamed Aboutorab, Michael Bewong, Praveen Gauravaram, Rafiqul Islam, Sharif Abuadbba,
- Abstract要約: フェデレートラーニング(FL)は、ローカルモデルを共有することで、中央サーバにプライベートデータを公開することなく、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする。
FLでは、敵が共有モデルパラメータから機密情報を推測する可能性のあるプライバシー上の脆弱性が報告されている。
本稿では,軽量な暗号プリミティブをプライバシリスクに利用したマスキングに基づくセキュアアグリゲーション手法を提案する。
- 参考スコア(独自算出の注目度): 13.117628927803985
- License:
- Abstract: Federated Learning (FL) allows users to collaboratively train a global machine learning model by sharing local model only, without exposing their private data to a central server. This distributed learning is particularly appealing in scenarios where data privacy is crucial, and it has garnered substantial attention from both industry and academia. However, studies have revealed privacy vulnerabilities in FL, where adversaries can potentially infer sensitive information from the shared model parameters. In this paper, we present an efficient masking-based secure aggregation scheme utilizing lightweight cryptographic primitives to mitigate privacy risks. Our scheme offers several advantages over existing methods. First, it requires only a single setup phase for the entire FL training session, significantly reducing communication overhead. Second, it minimizes user-side overhead by eliminating the need for user-to-user interactions, utilizing an intermediate server layer and a lightweight key negotiation method. Third, the scheme is highly resilient to user dropouts, and the users can join at any FL round. Fourth, it can detect and defend against malicious server activities, including recently discovered model inconsistency attacks. Finally, our scheme ensures security in both semi-honest and malicious settings. We provide security analysis to formally prove the robustness of our approach. Furthermore, we implemented an end-to-end prototype of our scheme. We conducted comprehensive experiments and comparisons, which show that it outperforms existing solutions in terms of communication and computation overhead, functionality, and security.
- Abstract(参考訳): フェデレートラーニング(FL)は、ローカルモデルを共有することで、中央サーバにプライベートデータを公開することなく、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする。
この分散学習は、データプライバシが不可欠であるシナリオにおいて特に魅力的であり、業界と学界の両方からかなりの注目を集めている。
しかし、FLのプライバシー上の脆弱性は研究によって明らかにされており、敵は共有モデルパラメータから機密情報を推測することができる。
本稿では,プライバシリスクを軽減するために,軽量な暗号プリミティブを用いたマスキングに基づくセキュアアグリゲーション方式を提案する。
我々の方式は既存の方法よりもいくつかの利点がある。
まず、FLトレーニングセッション全体に対して、単一のセットアップフェーズしか必要とせず、通信オーバーヘッドを大幅に削減します。
第二に、中間サーバ層と軽量キーネゴシエーション法を用いたユーザ間インタラクションの必要性を排除し、ユーザ側のオーバーヘッドを最小限に抑える。
第三に、このスキームはユーザーのドロップアウトに対して非常に耐性があり、ユーザーはどのFLラウンドにも参加できる。
第4に、最近発見されたモデル不整合攻撃を含む悪意のあるサーバーアクティビティを検出し、防御することができる。
最後に、このスキームは、半正直な設定と悪意のある設定の両方でセキュリティを確保する。
我々は、我々のアプローチの堅牢性を正式に証明するために、セキュリティ分析を提供する。
さらに,提案手法のエンドツーエンドプロトタイプを実装した。
我々は,コミュニケーションや計算のオーバーヘッド,機能,セキュリティの観点から,既存のソリューションよりも優れていることを示す総合的な実験と比較を行った。
関連論文リスト
- ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning(FL)は、プライバシ対応アプリケーション用に設計された分散学習フレームワークである。
従来のFLは、プレーンモデルのアップデートがサーバに送信されると、機密性の高いクライアントデータを露出するリスクにアプローチする。
GoogleのSecure Aggregation(SecAgg)プロトコルは、二重マスキング技術を使用することで、この脅威に対処する。
通信・計算効率の高いセキュアアグリゲーション手法であるACCESS-FLを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:03:38Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Enhancing Security and Privacy in Federated Learning using Low-Dimensional Update Representation and Proximity-Based Defense [23.280147155814955]
Federated Learning(FL)は、データ所有者がデータをローカライズしながらモデルを協調的にトレーニングできる、有望な機械学習パラダイムである。
その可能性にもかかわらず、FLはクライアントとサーバの両方の信頼性に関する課題に直面している。
我々は,分散学習環境におけるビザンチン攻撃に対するプライバシー保護と抵抗に対処するために,FLURPという新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-29T06:46:10Z) - Privacy-Preserving Intrusion Detection in Software-defined VANET using Federated Learning with BERT [0.0]
本研究では,Federated Learning (FL) 機能を用いた侵入検知手法を提案する。
FL-BERTは有望な結果を出し、この研究分野のさらなる研究の道を開いた。
この結果から,FL-BERTは攻撃検出を向上するための有望な手法であることが示唆された。
論文 参考訳(メタデータ) (2024-01-14T18:32:25Z) - SaFL: Sybil-aware Federated Learning with Application to Face Recognition [12.969417519807322]
Federated Learning(FL)は、顧客間で共同学習を行う機械学習パラダイムである。
マイナス面として、FLは研究を開始したばかりのセキュリティとプライバシに関する懸念を提起している。
本稿では,SAFL と呼ばれる FL の毒殺攻撃に対する新しい防御法を提案する。
論文 参考訳(メタデータ) (2023-11-07T21:06:06Z) - Efficient Vertical Federated Learning with Secure Aggregation [10.295508659999783]
本稿では,安全アグリゲーションのための最先端セキュリティモジュールを用いて,垂直FLを安全かつ効率的に訓練するための新しい設計を提案する。
我々は,同相暗号 (HE) と比較して9.1e2 3.8e4 の高速化を図りながら,本手法がトレーニング性能に影響を及ぼさないことを実証的に実証した。
論文 参考訳(メタデータ) (2023-05-18T18:08:36Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
本稿では,Federated Zero-Shot Learning FedZSLフレームワークを提案する。
FedZSLは、エッジデバイス上の分散データから中心的なモデルを学ぶ。
FedZSLの有効性と堅牢性は、3つのゼロショットベンチマークデータセットで実施された広範な実験によって実証された。
論文 参考訳(メタデータ) (2022-09-05T14:49:34Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
フェデレートラーニング(FL)は、生データを共有することなく、参加するユーザのセットから学習する、人気のある分散ラーニングスキーマとして登場した。
敵対的トレーニング(AT)は集中学習のための健全なソリューションを提供する。
既存のFL技術では,非IDユーザ間の対向的ロバスト性を効果的に広めることができないことを示す。
本稿では, バッチ正規化統計量を用いてロバスト性を伝達する, 単純かつ効果的な伝搬法を提案する。
論文 参考訳(メタデータ) (2021-06-18T15:52:33Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。