論文の概要: Setup Once, Secure Always: A Single-Setup Secure Federated Learning Aggregation Protocol with Forward and Backward Secrecy for Dynamic Users
- arxiv url: http://arxiv.org/abs/2502.08989v3
- Date: Tue, 19 Aug 2025 07:02:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.402626
- Title: Setup Once, Secure Always: A Single-Setup Secure Federated Learning Aggregation Protocol with Forward and Backward Secrecy for Dynamic Users
- Title(参考訳): 安全なセットアップ – 動的ユーザのための前方と後方のセキュアな単一のセキュアなフェデレーション学習アグリゲーションプロトコル
- Authors: Nazatul Haque Sultan, Yan Bo, Yansong Gao, Seyit Camtepe, Arash Mahboubi, Hang Thanh Bui, Aufeef Chauhan, Hamed Aboutorab, Michael Bewong, Dineshkumar Singh, Praveen Gauravaram, Rafiqul Islam, Sharif Abuadbba,
- Abstract要約: フェデレートラーニング(FL)は、複数のユーザが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
セキュアアグリゲーションプロトコルは、アグリゲーションされた更新のみを公開することで、このリスクを軽減する。
FLトレーニング全体のセットアップ操作を1つだけ必要とする,新たなセキュアアグリゲーションプロトコルを提案する。
- 参考スコア(独自算出の注目度): 12.804623314091508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables multiple users to collaboratively train a machine learning model without sharing raw data, making it suitable for privacy-sensitive applications. However, local model or weight updates can still leak sensitive information. Secure aggregation protocols mitigate this risk by ensuring that only the aggregated updates are revealed. Among these, single-setup protocols, where key generation and exchange occur only once, are the most efficient due to reduced communication and computation overhead. However, existing single-setup protocols often lack support for dynamic user participation and do not provide strong privacy guarantees such as forward and backward secrecy. In this paper, we propose a new secure aggregation protocol that requires only one setup operation for the entire FL training and allows new users to join or leave at any round. It employs lightweight symmetric homomorphic encryption with a key negation technique to efficiently mask updates, without user-to-user communication -- unlike the existing protocols. To defend against model inconsistency attacks, we introduce a simple verification mechanism using message authentication codes (MACs). Our protocol is the first to combine forward/backward secrecy, dropout resilience, and model integrity verification in a single-setup design. We provide formal security proofs and implement an end-to-end prototype, which source code has been released. Our experimental results show that our protocol reduces user-side computation by approximately 99% compared to state-of-the-art protocols like e-SeaFL (ACSAC'24), making it highly practical for real-world FL deployments, especially on resource-constrained devices.
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のユーザが生データを共有せずに機械学習モデルを協調的にトレーニングし、プライバシに敏感なアプリケーションに適している。
しかし、ローカルモデルやウェイトアップデートは機密情報を漏洩させる可能性がある。
セキュアアグリゲーションプロトコルは、アグリゲーションされた更新のみを公開することで、このリスクを軽減する。
これらのうち、キー生成と交換を1回だけ行う単一セットアッププロトコルは、通信と計算のオーバーヘッドが減ったため、最も効率的である。
しかしながら、既存のシングルセットプロトコルは、動的ユーザ参加のサポートを欠いていることが多く、前方および後方機密のような強力なプライバシ保証を提供していない。
本稿では,FLトレーニング全体に対して1つのセットアップ操作しか必要とせず,任意のラウンドで新規ユーザが参加あるいは離脱できるセキュアアグリゲーションプロトコルを提案する。
従来のプロトコルとは異なり、ユーザ間通信なしで、アップデートを効率的にマスクするために、キーネゲーション技術を備えた軽量な対称同型暗号化を採用している。
モデル不整合攻撃に対する防御として,メッセージ認証符号(MAC)を用いた簡易な検証機構を導入する。
我々のプロトコルは、単一のセットアップ設計でフォワード/バックシークエンス、ドロップアウトレジリエンス、モデルの整合性検証を組み合わせた最初のものである。
公式なセキュリティ証明を提供し、ソースコードがリリースされたエンドツーエンドのプロトタイプを実装します。
実験の結果,e-SeaFL (ACSAC'24) のような最先端のプロトコルと比較して,ユーザ側での計算を約99%削減し,実世界のFL展開,特に資源制約のあるデバイスにおいて極めて実用的であることがわかった。
関連論文リスト
- Information-Theoretic Decentralized Secure Aggregation with Collusion Resilience [98.31540557973179]
情報理論の観点から分散型セキュアアグリゲーション(DSA)の問題点を考察する。
DSAの最小到達可能な通信量と秘密鍵率を指定する最適レート領域を特徴付ける。
本研究は,DSAの基本性能限界を確立し,信頼性の高い通信効率の高いプロトコルの設計に関する知見を提供する。
論文 参考訳(メタデータ) (2025-08-01T12:51:37Z) - FuSeFL: Fully Secure and Scalable Cross-Silo Federated Learning [0.8686220240511062]
フェデレートラーニング(FL)は、クライアントデータを集中化せずに協調的なモデルトレーニングを可能にするため、プライバシに敏感なドメインには魅力的である。
クロスサイロ設定用に設計された完全セキュアでスケーラブルなFLスキームであるFuSeFLを提案する。
論文 参考訳(メタデータ) (2025-07-18T00:50:44Z) - VFEFL: Privacy-Preserving Federated Learning against Malicious Clients via Verifiable Functional Encryption [3.329039715890632]
フェデレートラーニング(Federated Learning)は、ローカルクライアントデータを公開せずに協調的なモデルトレーニングを可能にする、有望な分散学習パラダイムである。
フェデレーション学習の分散した性質は、悪意のあるクライアントによる攻撃に対して特に脆弱である。
本稿では,検証可能な機能暗号化に基づくプライバシ保護型フェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-15T13:38:40Z) - Fundamental Limits of Hierarchical Secure Aggregation with Cyclic User Association [93.46811590752814]
階層的なセキュアな集約は、連合学習によって動機づけられる。
本稿では,各ユーザが連続する$B$のリレーに接続される循環型アソシエーションパターンを用いたHSAについて考察する。
本稿では、勾配符号化にインスパイアされた入力に対するメッセージ設計を含む効率的なアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2025-03-06T15:53:37Z) - ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning(FL)は、プライバシ対応アプリケーション用に設計された分散学習フレームワークである。
従来のFLは、プレーンモデルのアップデートがサーバに送信されると、機密性の高いクライアントデータを露出するリスクにアプローチする。
GoogleのSecure Aggregation(SecAgg)プロトコルは、二重マスキング技術を使用することで、この脅威に対処する。
通信・計算効率の高いセキュアアグリゲーション手法であるACCESS-FLを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:03:38Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Privacy-Preserving Intrusion Detection in Software-defined VANET using Federated Learning with BERT [0.0]
本研究では,Federated Learning (FL) 機能を用いた侵入検知手法を提案する。
FL-BERTは有望な結果を出し、この研究分野のさらなる研究の道を開いた。
この結果から,FL-BERTは攻撃検出を向上するための有望な手法であることが示唆された。
論文 参考訳(メタデータ) (2024-01-14T18:32:25Z) - SaFL: Sybil-aware Federated Learning with Application to Face Recognition [12.969417519807322]
Federated Learning(FL)は、顧客間で共同学習を行う機械学習パラダイムである。
マイナス面として、FLは研究を開始したばかりのセキュリティとプライバシに関する懸念を提起している。
本稿では,SAFL と呼ばれる FL の毒殺攻撃に対する新しい防御法を提案する。
論文 参考訳(メタデータ) (2023-11-07T21:06:06Z) - FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users [19.209830150036254]
従来の機械学習パラダイムにおけるデータプライバシの問題を軽減するために、フェデレートラーニング(FL)技術が開発された。
次世代のFLアーキテクチャでは、モデル更新をサーバから保護するための暗号化と匿名化技術が提案されている。
本稿では,完全同型暗号(FHE)に基づく新しいFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T11:20:00Z) - Efficient Vertical Federated Learning with Secure Aggregation [10.295508659999783]
本稿では,安全アグリゲーションのための最先端セキュリティモジュールを用いて,垂直FLを安全かつ効率的に訓練するための新しい設計を提案する。
我々は,同相暗号 (HE) と比較して9.1e2 3.8e4 の高速化を図りながら,本手法がトレーニング性能に影響を及ぼさないことを実証的に実証した。
論文 参考訳(メタデータ) (2023-05-18T18:08:36Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
本稿では,Federated Zero-Shot Learning FedZSLフレームワークを提案する。
FedZSLは、エッジデバイス上の分散データから中心的なモデルを学ぶ。
FedZSLの有効性と堅牢性は、3つのゼロショットベンチマークデータセットで実施された広範な実験によって実証された。
論文 参考訳(メタデータ) (2022-09-05T14:49:34Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
フェデレートラーニング(FL)は、生データを共有することなく、参加するユーザのセットから学習する、人気のある分散ラーニングスキーマとして登場した。
敵対的トレーニング(AT)は集中学習のための健全なソリューションを提供する。
既存のFL技術では,非IDユーザ間の対向的ロバスト性を効果的に広めることができないことを示す。
本稿では, バッチ正規化統計量を用いてロバスト性を伝達する, 単純かつ効果的な伝搬法を提案する。
論文 参考訳(メタデータ) (2021-06-18T15:52:33Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。