論文の概要: Mechanistic Unveiling of Transformer Circuits: Self-Influence as a Key to Model Reasoning
- arxiv url: http://arxiv.org/abs/2502.09022v2
- Date: Fri, 14 Feb 2025 05:46:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:46:18.692464
- Title: Mechanistic Unveiling of Transformer Circuits: Self-Influence as a Key to Model Reasoning
- Title(参考訳): 変圧器回路の機械的展開:モデル推論の鍵としての自己影響
- Authors: Lin Zhang, Lijie Hu, Di Wang,
- Abstract要約: このような課題を解決するために言語モデルでどのような多段階推論機構が使われているのかはいまだ不明である。
回路解析と自己影響関数を用いて、推論過程を通して各トークンの変動の重要性を評価する。
提案手法は,モデルが使用する人間の解釈可能な推論過程を明らかにする。
- 参考スコア(独自算出の注目度): 9.795934690403374
- License:
- Abstract: Transformer-based language models have achieved significant success; however, their internal mechanisms remain largely opaque due to the complexity of non-linear interactions and high-dimensional operations. While previous studies have demonstrated that these models implicitly embed reasoning trees, humans typically employ various distinct logical reasoning mechanisms to complete the same task. It is still unclear which multi-step reasoning mechanisms are used by language models to solve such tasks. In this paper, we aim to address this question by investigating the mechanistic interpretability of language models, particularly in the context of multi-step reasoning tasks. Specifically, we employ circuit analysis and self-influence functions to evaluate the changing importance of each token throughout the reasoning process, allowing us to map the reasoning paths adopted by the model. We apply this methodology to the GPT-2 model on a prediction task (IOI) and demonstrate that the underlying circuits reveal a human-interpretable reasoning process used by the model.
- Abstract(参考訳): トランスフォーマーベースの言語モデルは大きな成功を収めているが、非線形相互作用と高次元演算の複雑さのため、内部メカニズムはほとんど不透明である。
以前の研究では、これらのモデルが暗黙的に推論木を埋め込むことが実証されているが、人間は通常、同じタスクを完了するために様々な異なる論理的推論メカニズムを使用している。
このような課題を解決するために言語モデルでどのような多段階推論機構が使われているのかはいまだ不明である。
本稿では,言語モデルの機械論的解釈可能性,特に多段階推論タスクの文脈において,この問題に対処することを目的とする。
具体的には、回路解析と自己影響関数を用いて、推論プロセスを通して各トークンの重要度の変化を評価し、モデルが採用する推論経路をマッピングする。
本手法を予測タスク(IOI)上でのGPT-2モデルに適用し,そのモデルが使用する人間解釈可能な推論プロセスを明らかにする。
関連論文リスト
- Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
インコンテキスト学習により、GPTスタイルのトランスフォーマーは、重みを変更することなく推論中に一般化できる。
本稿では,ICLタスクとしてアフィンの再発を学習し,予測する能力に着目する。
実験的手法と理論的手法の両方を用いてモデルの内部動作を分析する。
論文 参考訳(メタデータ) (2024-10-22T21:30:01Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP)は、大規模言語モデルが言語構造をどのように処理するかを分析するために設計された方法論である。
CAPは様々なモデルレベルで構成型プールを通してモデル活性化に介入する。
本研究は,合成セマンティクス処理とモデル解釈可能性に関する,現在のトランスフォーマーアーキテクチャの基本的制約を明らかにする。
論文 参考訳(メタデータ) (2024-10-16T18:10:50Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Axiomatic Causal Interventions for Reverse Engineering Relevance Computation in Neural Retrieval Models [20.29451537633895]
本稿では,ニューラルランサーのリバースエンジニアリングにおける因果介入法を提案する。
本稿では, 項周波数公理を満たす成分を分離するために, 機械的解釈可能性法をどのように利用できるかを示す。
論文 参考訳(メタデータ) (2024-05-03T22:30:15Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
合成推論タスクで訓練された変圧器の包括的力学解析について述べる。
モデルがタスクの解決に使用する解釈可能なメカニズムのセットを特定し,相関的および因果的証拠を用いた結果の検証を行った。
論文 参考訳(メタデータ) (2024-02-19T08:04:25Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
算数問題に対するトランスフォーマーに基づくLMの機械的解釈を提案する。
これにより、算術に関連する情報がLMによってどのように処理されるかについての洞察が得られる。
論文 参考訳(メタデータ) (2023-05-24T11:43:47Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
NLVR2およびDROPデータセット上でNMNの中間出力を評価する。
中間出力は期待出力と異なり,ネットワーク構造がモデル動作の忠実な説明を提供していないことを示す。
論文 参考訳(メタデータ) (2020-05-02T06:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。