論文の概要: Interpreting Affine Recurrence Learning in GPT-style Transformers
- arxiv url: http://arxiv.org/abs/2410.17438v1
- Date: Tue, 22 Oct 2024 21:30:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:57.876252
- Title: Interpreting Affine Recurrence Learning in GPT-style Transformers
- Title(参考訳): GPT型変圧器におけるアフィン再帰学習の解釈
- Authors: Samarth Bhargav, Alexander Gu,
- Abstract要約: インコンテキスト学習により、GPTスタイルのトランスフォーマーは、重みを変更することなく推論中に一般化できる。
本稿では,ICLタスクとしてアフィンの再発を学習し,予測する能力に着目する。
実験的手法と理論的手法の両方を用いてモデルの内部動作を分析する。
- 参考スコア(独自算出の注目度): 54.01174470722201
- License:
- Abstract: Understanding the internal mechanisms of GPT-style transformers, particularly their capacity to perform in-context learning (ICL), is critical for advancing AI alignment and interpretability. In-context learning allows transformers to generalize during inference without modifying their weights, yet the precise operations driving this capability remain largely opaque. This paper presents an investigation into the mechanistic interpretability of these transformers, focusing specifically on their ability to learn and predict affine recurrences as an ICL task. To address this, we trained a custom three-layer transformer to predict affine recurrences and analyzed the model's internal operations using both empirical and theoretical approaches. Our findings reveal that the model forms an initial estimate of the target sequence using a copying mechanism in the zeroth layer, which is subsequently refined through negative similarity heads in the second layer. These insights contribute to a deeper understanding of transformer behaviors in recursive tasks and offer potential avenues for improving AI alignment through mechanistic interpretability. Finally, we discuss the implications of our results for future work, including extensions to higher-dimensional recurrences and the exploration of polynomial sequences.
- Abstract(参考訳): GPTスタイルのトランスフォーマーの内部メカニズム、特にインコンテキストラーニング(ICL)の実行能力を理解することは、AIアライメントと解釈可能性の向上に不可欠である。
文脈内学習では、トランスフォーマーは重みを変更することなく推論中に一般化することができるが、この能力を実行する正確な操作はほとんど不透明である。
本稿では,これらの変圧器の機械的解釈可能性について検討し,ICLタスクとしてのアフィンの再発を学習し,予測する能力に着目した。
そこで我々は,アフィンの再発を予測するためにカスタムな3層トランスを訓練し,実験的および理論的アプローチの両方を用いてモデルの内部動作を解析した。
その結果, モデルが第0層のコピー機構を用いてターゲット配列の初期推定値を形成し, その後第2層の負の類似性ヘッドによって精製されることがわかった。
これらの洞察は、再帰的なタスクにおけるトランスフォーマーの振る舞いのより深い理解に寄与し、機械的解釈可能性を通じてAIアライメントを改善する潜在的な方法を提供する。
最後に, 高次元再帰への拡張や多項式列の探索など, 今後の研究における結果の意味について論じる。
関連論文リスト
- Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning [53.685764040547625]
トランスフォーマーベースの大規模言語モデル(LLM)は、卓越した創造力と出現能力を示している。
この研究は、トランスフォーマーが単語のマルチコンセプトセマンティクスをどのように活用し、強力なICLと優れたアウト・オブ・ディストリビューションICL能力を実現するかを示すための数学的解析を提供する。
論文 参考訳(メタデータ) (2024-11-04T15:54:32Z) - How Transformers Implement Induction Heads: Approximation and Optimization Analysis [11.789846138681359]
変換器が誘導ヘッドを実装する方法の近似と最適化の両方を提供する。
近似解析では、標準および一般化誘導ヘッド機構の両方を定式化する。
最適化解析のために,4-gramと2-gram成分からなる合成混合ターゲットのトレーニングダイナミクスについて検討した。
論文 参考訳(メタデータ) (2024-10-15T10:22:27Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
トランスフォーマーは、シーケンシャルなデータを扱う優れた能力のために、現代の機械学習において驚くべき成功を収めています。
本稿では, 単層変圧器のトレーニング力学の微細な非漸近解析を行う。
トレーニングされたトランスフォーマーは,データセットシフトによる非トーケン予測能力を示すことを示す。
論文 参考訳(メタデータ) (2024-09-25T20:22:06Z) - How Transformers Utilize Multi-Head Attention in In-Context Learning? A Case Study on Sparse Linear Regression [19.64743851296488]
本研究では、疎線形回帰問題を考察し、訓練されたマルチヘッドトランスがコンテキスト内学習を行う方法を検討する。
マルチヘッドの利用は層間における異なるパターンを示すことが実験的に明らかになった。
このような前処理列最適化アルゴリズムは、直交勾配勾配とリッジ回帰アルゴリズムを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-08-08T15:33:02Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
中間学習によりトランスフォーマーの構造的帰納バイアスを強化することを提案する。
実験の結果,チャンキングなどの構文的タスクのわずかな学習に有効であることが確認された。
分析の結果,中間的事前学習は,どのトークンにシナティクス変換を適用する必要があるかを追尾する注意を喚起することが明らかとなった。
論文 参考訳(メタデータ) (2024-07-05T14:29:44Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
合成推論タスクで訓練された変圧器の包括的力学解析について述べる。
モデルがタスクの解決に使用する解釈可能なメカニズムのセットを特定し,相関的および因果的証拠を用いた結果の検証を行った。
論文 参考訳(メタデータ) (2024-02-19T08:04:25Z) - Investigating Recurrent Transformers with Dynamic Halt [64.862738244735]
本研究では, 変圧器の繰り返し機構を付加する2つの主要な手法の帰納バイアスについて検討する。
提案手法を拡張・結合する新しい手法を提案し,検討する。
論文 参考訳(メタデータ) (2024-02-01T19:47:31Z) - In-Context Convergence of Transformers [63.04956160537308]
勾配降下法により訓練したソフトマックスアテンションを有する一層変圧器の学習力学について検討した。
不均衡な特徴を持つデータに対しては、学習力学が段階的に収束する過程をとることを示す。
論文 参考訳(メタデータ) (2023-10-08T17:55:33Z) - Effects of Parameter Norm Growth During Transformer Training: Inductive
Bias from Gradient Descent [44.44543743806831]
本研究では, トレーニング中にこれらの標準間に飽和しながら, 変圧器パラメータが大きくなる傾向について検討した。
パラメータが大きくなるにつれて、ネットワークは飽和活性化関数を持つ離散化されたネットワークに近似することが証明される。
以上の結果から,飽和はNLPに対する特定の関心のGDに暗黙的な誘導バイアスの新たな特徴であることが示唆された。
論文 参考訳(メタデータ) (2020-10-19T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。