論文の概要: Scaling Law for Stochastic Gradient Descent in Quadratically Parameterized Linear Regression
- arxiv url: http://arxiv.org/abs/2502.09106v1
- Date: Thu, 13 Feb 2025 09:29:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:41.224868
- Title: Scaling Law for Stochastic Gradient Descent in Quadratically Parameterized Linear Regression
- Title(参考訳): 二次パラメータ化線形回帰における確率勾配のスケーリング法則
- Authors: Shihong Ding, Haihan Zhang, Hanzhen Zhao, Cong Fang,
- Abstract要約: 機械学習において、スケーリング法則は、モデルとデータサイズをスケールアップすることで、モデルパフォーマンスがどのように改善されるかを記述する。
本稿では,2次パラメータ化モデルを用いた線形回帰のスケーリング法則について検討する。
その結果、正準線形回帰では、特徴学習による一般化と不要な曲線と、パラメトリゼーション法とアルゴリズムに対する情報理論の下界との明確な分離が提供される。
- 参考スコア(独自算出の注目度): 5.801904710149222
- License:
- Abstract: In machine learning, the scaling law describes how the model performance improves with the model and data size scaling up. From a learning theory perspective, this class of results establishes upper and lower generalization bounds for a specific learning algorithm. Here, the exact algorithm running using a specific model parameterization often offers a crucial implicit regularization effect, leading to good generalization. To characterize the scaling law, previous theoretical studies mainly focus on linear models, whereas, feature learning, a notable process that contributes to the remarkable empirical success of neural networks, is regretfully vacant. This paper studies the scaling law over a linear regression with the model being quadratically parameterized. We consider infinitely dimensional data and slope ground truth, both signals exhibiting certain power-law decay rates. We study convergence rates for Stochastic Gradient Descent and demonstrate the learning rates for variables will automatically adapt to the ground truth. As a result, in the canonical linear regression, we provide explicit separations for generalization curves between SGD with and without feature learning, and the information-theoretical lower bound that is agnostic to parametrization method and the algorithm. Our analysis for decaying ground truth provides a new characterization for the learning dynamic of the model.
- Abstract(参考訳): 機械学習において、スケーリング法則は、モデルとデータサイズをスケールアップすることで、モデルパフォーマンスがどのように改善されるかを記述する。
学習理論の観点から、このクラスは特定の学習アルゴリズムの上下の一般化境界を定めている。
ここでは、特定のモデルのパラメータ化を用いて実行される正確なアルゴリズムは、しばしば決定的な暗黙の正規化効果を与え、良い一般化をもたらす。
スケーリング法則を特徴づけるために、従来の理論的研究は主に線形モデルに焦点を当てていたが、ニューラルネットワークの顕著な経験的成功に寄与する特徴学習は残念なことに空白である。
本稿では,2次パラメータ化モデルを用いた線形回帰のスケーリング法則について検討する。
我々は、無限次元のデータと傾斜地真実を考察し、どちらの信号も一定のパワー-ロー減衰率を示す。
確率的勾配 Descent の収束率について検討し,変数の学習速度が基底真理に自動的に適応することを示した。
その結果、正準線形回帰では、特徴学習の有無にかかわらずSGD間の一般化曲線と、パラメトリゼーション法やアルゴリズムに非依存な情報理論の下界を明示的に分離する。
崩壊する基底真理に対する我々の分析は、モデルの学習力学に新たな特徴を与える。
関連論文リスト
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
最近の研究は、自己教師付き学習とグラフラプラシアン作用素のトップ固有空間の近似との関係を構築している。
この研究は、増強に基づく事前訓練の統計的分析に発展する。
論文 参考訳(メタデータ) (2023-06-01T15:18:55Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
本稿では,ガウス的特徴を持つ線形回帰モデルの下で,過剰適合型メタラーニングの性能について検討する。
シングルタスク線形回帰には存在しない新しい興味深い性質が見つかる。
本分析は,各訓練課題における基礎的真理のノイズや多様性・変動が大きい場合には,良心過剰がより重要かつ容易に観察できることを示唆する。
論文 参考訳(メタデータ) (2023-04-09T20:36:13Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of
Overparameterized Machine Learning [37.01683478234978]
機械学習(ML)の急速な進歩は、この分野の長年のドグマに挑戦する科学的な疑問を数多く提起している。
最も重要なライドルの1つは、パラメータ化されたモデルの優れた経験的一般化である。
論文 参考訳(メタデータ) (2021-09-06T10:48:40Z) - Provable Benefits of Overparameterization in Model Compression: From
Double Descent to Pruning Neural Networks [38.153825455980645]
最近の実証的な証拠は、オーバライゼーションの実践が大きなモデルのトレーニングに利益をもたらすだけでなく、軽量モデルの構築を支援することも示している。
本稿では,モデル刈り込みの高次元ツールセットを理論的に特徴付けることにより,これらの経験的発見に光を当てる。
もっとも情報に富む特徴の位置が分かっていても、我々は大きなモデルに適合し、刈り取るのがよい体制を解析的に特定する。
論文 参考訳(メタデータ) (2020-12-16T05:13:30Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
現代のディープラーニングモデルでは、トレーニングデータに適合するために必要なパラメータよりもはるかに多くのパラメータが採用されている。
この予期せぬ振る舞いを記述するための新たなパラダイムは、エンファンダブル降下曲線(英語版)である。
本稿では,勾配降下を伴う広帯域ニューラルネットワークの挙動を特徴付けるニューラル・タンジェント・カーネルを用いた一般化の高精度な高次元解析を行う。
論文 参考訳(メタデータ) (2020-08-15T20:55:40Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Dimension Independent Generalization Error by Stochastic Gradient
Descent [12.474236773219067]
本稿では, 局所凸損失関数に対する降下(SGD)解の一般化誤差に関する理論を提案する。
一般化誤差は$p$次元に依存したり、低効用$p$対数因子に依存しないことを示す。
論文 参考訳(メタデータ) (2020-03-25T03:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。