論文の概要: Regularization can make diffusion models more efficient
- arxiv url: http://arxiv.org/abs/2502.09151v1
- Date: Thu, 13 Feb 2025 10:27:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:49:30.961543
- Title: Regularization can make diffusion models more efficient
- Title(参考訳): 正規化は拡散モデルをより効率的にする
- Authors: Mahsa Taheri, Johannes Lederer,
- Abstract要約: 本研究は,特に統計学でよく知られている疎水性の概念が,より効率的な拡散パイプラインの経路となることを示唆している。
我々の数学的保証は、空間が入力次元の計算複雑性への影響を、データの本質的な次元よりもはるかに小さくすることができることを証明している。
- 参考スコア(独自算出の注目度): 6.790905400046195
- License:
- Abstract: Diffusion models are one of the key architectures of generative AI. Their main drawback, however, is the computational costs. This study indicates that the concept of sparsity, well known especially in statistics, can provide a pathway to more efficient diffusion pipelines. Our mathematical guarantees prove that sparsity can reduce the input dimension's influence on the computational complexity to that of a much smaller intrinsic dimension of the data. Our empirical findings confirm that inducing sparsity can indeed lead to better samples at a lower cost.
- Abstract(参考訳): 拡散モデルは、生成AIの重要なアーキテクチャの1つである。
しかし、主な欠点は計算コストである。
本研究は,特に統計学でよく知られている疎水性の概念が,より効率的な拡散パイプラインの経路となることを示唆している。
我々の数学的保証は、空間が入力次元の計算複雑性への影響を、データの本質的な次元よりもはるかに小さくすることができることを証明している。
私たちの経験から、スパーシリティの誘発は、確かにより良いサンプルを低コストで得ることが確認された。
関連論文リスト
- Data Augmentation via Diffusion Model to Enhance AI Fairness [1.2979015577834876]
本稿では,AIフェアネスを改善するために合成データを生成する拡散モデルの可能性について検討する。
Tabular Denoising Diffusion Probabilistic Model (Tab-DDPM) を用いてデータ拡張を行った。
実験結果から,Tab-DDPMにより生成された合成データは,二項分類の公平性を向上させることが示された。
論文 参考訳(メタデータ) (2024-10-20T18:52:31Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
拡散モデルのレンズによる電力グリッドのカスケード故障について検討する。
我々のモデルは、バイラル拡散原理と物理に基づく概念を統合する。
この拡散モデルはカスケード故障の痕跡から学習可能であることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:34:24Z) - Bigger is not Always Better: Scaling Properties of Latent Diffusion Models [46.52780730073693]
遅延拡散モデル (LDM) のスケーリング特性について, サンプリング効率に着目して検討した。
モデルサイズがサンプリング効率にどのように影響するかを,様々なサンプリングステップで詳細に調査する。
予測予算の下で運用する場合、より小さなモデルは、高品質な結果を生み出す上で、より大きな等価性を上回ることがよくあります。
論文 参考訳(メタデータ) (2024-04-01T17:59:48Z) - The Missing U for Efficient Diffusion Models [3.712196074875643]
拡散確率モデル(Diffusion Probabilistic Models)は、画像合成、ビデオ生成、分子設計などのタスクにおいて、記録破りのパフォーマンスをもたらす。
それらの能力にもかかわらず、その効率、特に逆過程では、収束速度が遅いことと計算コストが高いため、依然として課題である。
本研究では,連続力学系を利用した拡散モデルのための新しいデノナイジングネットワークの設計手法を提案する。
論文 参考訳(メタデータ) (2023-10-31T00:12:14Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
拡散に基づく生成モデルは、逆拡散連鎖を推論してデータを生成する方法を学ぶ。
我々は、データが純粋なランダムノイズになるまで、より高速で安価にノイズを付加するアプローチを提案する。
提案手法は,拡散過程と学習可能な暗黙的前処理の両方によって付与された逆自動エンコーダとしてキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-02-19T20:18:49Z) - Forward Operator Estimation in Generative Models with Kernel Transfer
Operators [37.999297683250575]
本定式化により,高効率な分布近似とサンプリングが可能となり,驚くほど優れた実験性能が得られることを示す。
また、このアルゴリズムは小さなサンプルサイズ設定(脳画像)でも良好に動作することを示す。
論文 参考訳(メタデータ) (2021-12-01T06:54:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。