Use of Air Quality Sensor Network Data for Real-time Pollution-Aware POI Suggestion
- URL: http://arxiv.org/abs/2502.09155v1
- Date: Thu, 13 Feb 2025 10:36:17 GMT
- Title: Use of Air Quality Sensor Network Data for Real-time Pollution-Aware POI Suggestion
- Authors: Giuseppe Fasano, Yashar Deldjoo, Tommaso di Noia, Bianca Lau, Sina Adham-Khiabani, Eric Morris, Xia Liu, Ganga Chinna Rao Devarapu, Liam O'Faolain,
- Abstract summary: AirSense-R is a mobile application that provides real-time, pollution-aware recommendations for points of interest (POIs) in urban environments.
The proposed system aims to help users make health-conscious decisions about the locations they visit.
- Score: 10.782779065468558
- License:
- Abstract: This demo paper presents AirSense-R, a privacy-preserving mobile application that provides real-time, pollution-aware recommendations for points of interest (POIs) in urban environments. By combining real-time air quality monitoring data with user preferences, the proposed system aims to help users make health-conscious decisions about the locations they visit. The application utilizes collaborative filtering for personalized suggestions, and federated learning for privacy protection, and integrates air pollutant readings from AirSENCE sensor networks in cities such as Bari, Italy, and Cork, Ireland. Additionally, the AirSENCE prediction engine can be employed to detect anomaly readings and interpolate for air quality readings in areas with sparse sensor coverage. This system offers a promising, health-oriented POI recommendation solution that adapts dynamically to current urban air quality conditions while safeguarding user privacy. The code of AirTOWN and a demonstration video is made available at the following repo: https://github.com/AirtownApp/Airtown-Application.git.
Related papers
- AirTOWN: A Privacy-Preserving Mobile App for Real-time Pollution-Aware POI Suggestion [14.990257803108625]
airtown is a mobile application that provides real-time, pollution-aware recommendations for points of interest (POIs) in urban environments.
By combining real-time Air Quality Index (AQI) data with user preferences, the proposed system aims to help users make health-conscious decisions about the locations they visit.
arXiv Detail & Related papers (2025-01-23T12:28:22Z) - Wireless Crowd Detection for Smart Overtourism Mitigation [50.031356998422815]
This chapter describes a low-cost approach to monitoring overtourism based on mobile devices' wireless activity.
The crowding sensors count the number of surrounding mobile devices, by detecting trace elements of wireless technologies.
They run detection programs for several technologies, and fingerprinting analysis results are only stored locally in an anonymized database.
arXiv Detail & Related papers (2024-02-14T13:20:24Z) - Gaussian Processes for Monitoring Air-Quality in Kampala [3.173497841606415]
We investigate the use of Gaussian Processes for nowcasting the current air-pollution in places where there are no sensors and forecasting the air-pollution in the future at the sensor locations.
We focus on the city of Kampala in Uganda, using data from AirQo's network of sensors.
arXiv Detail & Related papers (2023-11-28T09:25:23Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - IoT-Based Air Quality Monitoring System with Machine Learning for
Accurate and Real-time Data Analysis [0.0]
We propose the development of a portable air quality detection device that can be used anywhere.
The data collected will be stored and visualized using the cloud-based web app ThinkSpeak.
arXiv Detail & Related papers (2023-07-02T14:18:04Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - Dynamic Price of Parking Service based on Deep Learning [68.8204255655161]
The improvement of air-quality in urban areas is one of the main concerns of public government bodies.
This concern emerges from the evidence between the air quality and the public health.
Proposal for dynamic prices in regulated parking services is presented.
arXiv Detail & Related papers (2022-01-11T20:31:35Z) - AIREX: Neural Network-based Approach for Air Quality Inference in
Unmonitored Cities [0.491574468325115]
Monitoring stations have been established to continuously obtain air quality information, but they do not cover all areas.
Existing methods aim to infer air quality of locations only in monitored cities, they do not assume inferring air quality in unmonitored cities.
We propose a neural network-based approach AIREX to accurately infer air quality in unmonitored cities.
arXiv Detail & Related papers (2021-08-16T14:41:14Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - AiR -- An Augmented Reality Application for Visualizing Air Pollution [5.564705758320338]
AiR considers the air quality measured by CPCB, in a locality detected by the user's GPS or in a locality of user's choice, and visualizes various air pollutants present in the locality.
AiR also creates awareness in an interactive manner about the different pollutants, sources, and their impacts on health.
arXiv Detail & Related papers (2020-06-03T10:03:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.