論文の概要: Reliable Conversational Agents under ASP Control that Understand Natural Language
- arxiv url: http://arxiv.org/abs/2502.09237v1
- Date: Thu, 13 Feb 2025 11:54:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:52.293098
- Title: Reliable Conversational Agents under ASP Control that Understand Natural Language
- Title(参考訳): 自然言語を理解するASP制御下での信頼性のある会話エージェント
- Authors: Yankai Zeng,
- Abstract要約: 大きな言語モデル(LLM)は、機械との人間的な会話を可能にする。
この問題を解消する最善の方法は、文章を知識に翻訳するためにのみLLMを使用することである、と私たちは信じています。
LLMとASPをベースにしたフレームワークを開発しており、人間の会話を"理解"する信頼できるチャットボットを実現しています。
- 参考スコア(独自算出の注目度): 0.17094064195431144
- License:
- Abstract: Efforts have been made to make machines converse like humans in the past few decades. The recent techniques of Large Language Models (LLMs) make it possible to have human-like conversations with machines, but LLM's flaws of lacking understanding and reliability are well documented. We believe that the best way to eliminate this problem is to use LLMs only as parsers to translate text to knowledge and vice versa and carry out the conversation by reasoning over this knowledge using the answer set programming. I have been developing a framework based on LLMs and ASP to realize reliable chatbots that "understand" human conversation. This framework has been used to develop task-specific chatbots as well as socialbots. My future research is focused on making these chatbots scalable and trainable.
- Abstract(参考訳): 過去数十年間、機械を人間のように会話させる努力が続けられてきた。
LLM(Large Language Models)の最近の技術は、機械との人間的な会話を可能にするが、LLMの理解と信頼性の欠如は十分に文書化されている。
この問題を解消する最善の方法は、文を知識に翻訳するパーサーとしてのみLLMを使用することであり、その逆もまた、解集合プログラミングを用いてこの知識を推論して会話を行うことである、と我々は信じている。
LLMとASPをベースにしたフレームワークを開発しており、人間の会話を"理解"する信頼できるチャットボットを実現しています。
このフレームワークはタスク固有のチャットボットやソーシャルボットの開発に使われてきた。
私の将来の研究は、これらのチャットボットをスケーラブルでトレーニングしやすいものにすることに集中しています。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - A Reliable Common-Sense Reasoning Socialbot Built Using LLMs and Goal-Directed ASP [3.17686396799427]
自然言語を述語に翻訳するためにLLMモデルを用いたソーシャルボットであるAutoCompanionを提案する。
本稿では, LLM を用いてユーザメッセージを解析し, s(CASP) エンジン出力から応答を生成する手法について述べる。
論文 参考訳(メタデータ) (2024-07-26T04:13:43Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
本研究では,人間とチャットボットの対話をシミュレートする多元多元対話を自動生成する,目標指向のペルソナに基づく手法を提案する。
本手法は,人間とチャットボットの対話を高い相違率でシミュレートすることができる。
論文 参考訳(メタデータ) (2024-07-04T14:49:46Z) - A Complete Survey on LLM-based AI Chatbots [46.18523139094807]
過去数十年間、データの増加を目撃し、データ収集、学習ベースのAI技術の基礎を築いた。
AIチャットボットと呼ばれる会話エージェントは、大きな言語モデル(LLM)をトレーニングし、ユーザのプロンプトに応じて新しいコンテンツ(知識)を生成するために、そのようなデータに大きく依存している。
本稿では,様々な分野におけるLLMベースのチャットボットの進化と展開に関する完全な調査を行う。
論文 参考訳(メタデータ) (2024-06-17T09:39:34Z) - From Human-to-Human to Human-to-Bot Conversations in Software Engineering [3.1747517745997014]
AIとチャットボットの統合後,現代のソフトウェア開発において発生する会話のダイナミクスを理解することを目的としている。
既存の会話属性を人間やNLUベースのチャットボットとコンパイルし、ソフトウェア開発のコンテキストに適応する。
我々は人間同士の会話と人間同士の会話の類似点と相違点を示す。
LLM-chatbotsによる最近の会話スタイルは、人間との会話に取って代わるものではないと結論付けている。
論文 参考訳(メタデータ) (2024-05-21T12:04:55Z) - Supporting Student Decisions on Learning Recommendations: An LLM-Based
Chatbot with Knowledge Graph Contextualization for Conversational
Explainability and Mentoring [0.0]
本稿では,チャットボットを会話の仲介者として利用する手法を提案する。
グループチャットアプローチは、必要に応じて、あるいはチャットボットの予め定義されたタスクを超える場合に、学生と人間のメンターを結びつけるために開発された。
論文 参考訳(メタデータ) (2024-01-16T17:31:35Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
本報告では,人間型マルチターンチャットのための既存大規模言語モデルの予備的評価を行う。
そこで我々は,ChatSEEDに基づくマルチターン対話を発話によって生成する大規模言語モデル(LLM)を提案する。
GPT-4は優れた品質の人型多元対話を生成できるが、その性能は著しく上回っている。
論文 参考訳(メタデータ) (2023-10-20T16:53:51Z) - Training Conversational Agents with Generative Conversational Networks [74.9941330874663]
我々は、生成会話ネットワークを使用して、自動的にデータを生成し、社会的会話エージェントを訓練する。
自動メトリクスと人的評価器を用いてTopicalChatのアプローチを評価し、10%のシードデータで100%のデータを使用するベースラインに近いパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-15T21:46:39Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z) - Conversational agents for learning foreign languages -- a survey [0.0]
会話の実践は、すべての言語学習者には不可欠だが、十分な知識と非常に高価なものを得ることは困難である。
本稿では,言語学習のためのチャットボットの概要,既存のアプローチを批判的に分析し,今後の課題について論じる。
論文 参考訳(メタデータ) (2020-11-16T12:27:02Z) - Spot The Bot: A Robust and Efficient Framework for the Evaluation of
Conversational Dialogue Systems [21.36935947626793]
emphSpot ボットは人間とボットの会話をボット間の会話に置き換える。
人間の判断は、それが人間であるかどうかに関わらず、会話において各実体に注釈を付けるだけである。
emphSurvival Analysisは、人間のような行動を最も長く維持できるボットを計測する。
論文 参考訳(メタデータ) (2020-10-05T16:37:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。