Non-asymptotic Analysis of Diffusion Annealed Langevin Monte Carlo for Generative Modelling
- URL: http://arxiv.org/abs/2502.09306v1
- Date: Thu, 13 Feb 2025 13:18:30 GMT
- Title: Non-asymptotic Analysis of Diffusion Annealed Langevin Monte Carlo for Generative Modelling
- Authors: Paula Cordero-Encinar, O. Deniz Akyildiz, Andrew B. Duncan,
- Abstract summary: We provide non-asymptotic error bounds for the Langevin dynamics where the path of distributions is defined as Gaussian convolutions of the data distribution as in diffusion models.
We then extend our results to recently proposed heavy-tailed (Student's t) diffusion paths, demonstrating their theoretical properties for heavy-tailed data distributions for the first time.
- Score: 1.9526430269580959
- License:
- Abstract: We investigate the theoretical properties of general diffusion (interpolation) paths and their Langevin Monte Carlo implementation, referred to as diffusion annealed Langevin Monte Carlo (DALMC), under weak conditions on the data distribution. Specifically, we analyse and provide non-asymptotic error bounds for the annealed Langevin dynamics where the path of distributions is defined as Gaussian convolutions of the data distribution as in diffusion models. We then extend our results to recently proposed heavy-tailed (Student's t) diffusion paths, demonstrating their theoretical properties for heavy-tailed data distributions for the first time. Our analysis provides theoretical guarantees for a class of score-based generative models that interpolate between a simple distribution (Gaussian or Student's t) and the data distribution in finite time. This approach offers a broader perspective compared to standard score-based diffusion approaches, which are typically based on a forward Ornstein-Uhlenbeck (OU) noising process.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework [11.71206628091551]
We propose a comprehensive framework for the error analysis of discrete diffusion models based on L'evy-type integrals.
Our framework unifies and strengthens the current theoretical results on discrete diffusion models.
arXiv Detail & Related papers (2024-10-04T16:59:29Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Mathematical analysis of singularities in the diffusion model under the submanifold assumption [0.0]
The drift term of the backward sampling process is represented as a conditional expectation involving the data distribution and the forward diffusion.
The training process aims to find such a drift function by minimizing the mean-squared residue related to the conditional expectation.
We show that the analytical mean drift function in DDPM and the score function in SGMally blow up in the final stages of the sampling process for singular data distributions.
arXiv Detail & Related papers (2023-01-19T05:13:03Z) - An optimal control perspective on diffusion-based generative modeling [9.806130366152194]
We establish a connection between optimal control and generative models based on differential equations (SDEs)
In particular, we derive a Hamilton-Jacobi-Bellman equation that governs the evolution of the log-densities of the underlying SDE marginals.
We develop a novel diffusion-based method for sampling from unnormalized densities.
arXiv Detail & Related papers (2022-11-02T17:59:09Z) - Convergence of denoising diffusion models under the manifold hypothesis [3.096615629099617]
Denoising diffusion models are a recent class of generative models exhibiting state-of-the-art performance in image and audio synthesis.
This paper provides the first convergence results for diffusion models in a more general setting.
arXiv Detail & Related papers (2022-08-10T12:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.