Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
- URL: http://arxiv.org/abs/2502.09356v1
- Date: Thu, 13 Feb 2025 14:21:03 GMT
- Title: Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
- Authors: Gabriel Tseng, Anthony Fuller, Marlena Reil, Henry Herzog, Patrick Beukema, Favyen Bastani, James R. Green, Evan Shelhamer, Hannah Kerner, David Rolnick,
- Abstract summary: We introduce a novel and highly effective self-supervised learning approach to learn both large- and small-scale features.
Our Galileo models obtain state-of-the-art results across diverse remote sensing tasks.
- Score: 34.71460539414284
- License:
- Abstract: From crop mapping to flood detection, machine learning in remote sensing has a wide range of societally beneficial applications. The commonalities between remote sensing data in these applications present an opportunity for pretrained machine learning models tailored to remote sensing to reduce the labeled data and effort required to solve individual tasks. However, such models must be: (i) flexible enough to ingest input data of varying sensor modalities and shapes (i.e., of varying spatial and temporal dimensions), and (ii) able to model Earth surface phenomena of varying scales and types. To solve this gap, we present Galileo, a family of pretrained remote sensing models designed to flexibly process multimodal remote sensing data. We also introduce a novel and highly effective self-supervised learning approach to learn both large- and small-scale features, a challenge not addressed by previous models. Our Galileo models obtain state-of-the-art results across diverse remote sensing tasks.
Related papers
- Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets.
We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks.
We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning.
arXiv Detail & Related papers (2024-08-08T11:34:31Z) - Physics Sensor Based Deep Learning Fall Detection System [0.9128828609564524]
We build a complete system named TSFallDetect including data receiving device based on embedded sensor.
We exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors.
arXiv Detail & Related papers (2024-02-29T07:50:06Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Lightweight, Pre-trained Transformers for Remote Sensing Timeseries [33.44703824007848]
Presto is a model pre-trained on remote sensing pixel-timeseries data.
It excels at a wide variety of globally distributed remote sensing tasks and performs competitively with much larger models.
arXiv Detail & Related papers (2023-04-27T09:52:35Z) - Data Models for Dataset Drift Controls in Machine Learning With Optical
Images [8.818468649062932]
A primary failure mode are performance drops due to differences between the training and deployment data.
Existing approaches do not account for explicit models of the primary object of interest: the data.
We demonstrate how such data models can be constructed for image data and used to control downstream machine learning model performance related to dataset drift.
arXiv Detail & Related papers (2022-11-04T16:50:10Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Transformer-Based Behavioral Representation Learning Enables Transfer
Learning for Mobile Sensing in Small Datasets [4.276883061502341]
We provide a neural architecture framework for mobile sensing data that can learn generalizable feature representations from time series.
This architecture combines benefits from CNN and Trans-former architectures to enable better prediction performance.
arXiv Detail & Related papers (2021-07-09T22:26:50Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Invariant Feature Learning for Sensor-based Human Activity Recognition [11.334750079923428]
We present an invariant feature learning framework (IFLF) that extracts common information shared across subjects and devices.
Experiments demonstrated that IFLF is effective in handling both subject and device diversion across popular open datasets and an in-house dataset.
arXiv Detail & Related papers (2020-12-14T21:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.