論文の概要: Language Agents as Digital Representatives in Collective Decision-Making
- arxiv url: http://arxiv.org/abs/2502.09369v1
- Date: Thu, 13 Feb 2025 14:35:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:51:09.949531
- Title: Language Agents as Digital Representatives in Collective Decision-Making
- Title(参考訳): 集団意思決定におけるデジタル代表としての言語エージェント
- Authors: Daniel Jarrett, Miruna Pîslar, Michiel A. Bakker, Michael Henry Tessler, Raphael Köster, Jan Balaguer, Romuald Elie, Christopher Summerfield, Andrea Tacchetti,
- Abstract要約: 表現」とは、プロキシエージェントの参加を通じて、プロセスに個人の嗜好を提示する活動である。
本研究では,人的エージェントの代表者の行動能力を高めるために,テキストエージェントを訓練する可能性について検討する。
- 参考スコア(独自算出の注目度): 22.656601943922066
- License:
- Abstract: Consider the process of collective decision-making, in which a group of individuals interactively select a preferred outcome from among a universe of alternatives. In this context, "representation" is the activity of making an individual's preferences present in the process via participation by a proxy agent -- i.e. their "representative". To this end, learned models of human behavior have the potential to fill this role, with practical implications for multi-agent scenario studies and mechanism design. In this work, we investigate the possibility of training \textit{language agents} to behave in the capacity of representatives of human agents, appropriately expressing the preferences of those individuals whom they stand for. First, we formalize the setting of \textit{collective decision-making} -- as the episodic process of interaction between a group of agents and a decision mechanism. On this basis, we then formalize the problem of \textit{digital representation} -- as the simulation of an agent's behavior to yield equivalent outcomes from the mechanism. Finally, we conduct an empirical case study in the setting of \textit{consensus-finding} among diverse humans, and demonstrate the feasibility of fine-tuning large language models to act as digital representatives.
- Abstract(参考訳): 集団意思決定のプロセスについて考えてみましょう。集団は、選択肢の宇宙の中で、対話的に望ましい結果を選択する。
この文脈において「表現」とは、代理エージェント(つまり「表現」)の参加を通じて、プロセスに個人の嗜好を提示する活動である。
この目的のために、学習された人間の行動モデルがこの役割を果たす可能性があり、マルチエージェントシナリオ研究やメカニズム設計に実践的な意味を持つ。
本研究では,人間エージェントの代表者の能力で行動する「textit{ speech agent}」の訓練の可能性について検討し,その担当者の好みを適切に表現する。
まず、エージェント群と決定機構の相互作用のエピソジックなプロセスとして「textit{collective decision-making}」の設定を定式化し、それに基づいて、エージェントの振る舞いのシミュレーションとして「textit{digital representation}」の問題を定式化し、そのメカニズムから等価な結果を得る。
最後に,多種多様なヒトにおける「textit{consensus-finding}」の設定における経験的ケーススタディを行い,デジタル代表として機能する大規模言語モデルの実現可能性を示す。
関連論文リスト
- Artificial Agency and Large Language Models [0.0]
大規模言語モデル(LLM)は、人工的にエージェンシーを実現する可能性について哲学的な議論を巻き起こしている。
人工エージェントのしきい値概念として使用できる理論モデルを提案する。
論文 参考訳(メタデータ) (2024-07-23T05:32:00Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Understanding Your Agent: Leveraging Large Language Models for Behavior
Explanation [7.647395374489533]
本研究では,状態や行動の観察のみに基づいて,エージェントの行動に関する自然言語説明を生成する手法を提案する。
提案手法は,人間ドメインの専門家が作成したものと同じくらい役立つ説明を生成する。
論文 参考訳(メタデータ) (2023-11-29T20:16:23Z) - On the Discussion of Large Language Models: Symmetry of Agents and
Interplay with Prompts [51.3324922038486]
本稿では,プロンプトの相互作用と議論機構の実証結果について報告する。
また、コンピュートとマージに基づくスケーラブルな議論機構も提案している。
論文 参考訳(メタデータ) (2023-11-13T04:56:48Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Explaining Agent Behavior with Large Language Models [7.128139268426959]
本研究では,状態や行動の観察のみに基づいて,エージェントの行動に関する自然言語説明を生成する手法を提案する。
エージェントの振る舞いのコンパクトな表現がいかに学習され、妥当な説明を生み出すかを示す。
論文 参考訳(メタデータ) (2023-09-19T06:13:24Z) - Mimetic Models: Ethical Implications of AI that Acts Like You [5.843033621853535]
人工知能研究における新たなテーマは、特定の人々の決定と振る舞いをシミュレートするモデルの作成である。
われわれは, 倫理的, 社会的問題に対処するための枠組みを構築した。
論文 参考訳(メタデータ) (2022-07-19T16:41:36Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Towards Socially Intelligent Agents with Mental State Transition and
Human Utility [97.01430011496576]
対話エージェントに精神状態と実用性モデルを取り入れることを提案する。
ハイブリッド精神状態は、対話とイベント観察の両方から情報を抽出する。
ユーティリティモデルは、クラウドソースのソーシャルコモンセンスデータセットから人間の好みを学習するランキングモデルである。
論文 参考訳(メタデータ) (2021-03-12T00:06:51Z) - Modelling Agent Policies with Interpretable Imitation Learning [12.858982225307809]
MDP環境における逆エンジニアリングブラックボックスエージェントポリシーにおける模倣学習のアプローチについて概説する。
我々はマルコフ状態から構築された多数の候補特徴空間からエージェントの潜在状態表現を明示的にモデル化し学習する。
論文 参考訳(メタデータ) (2020-06-19T18:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。