A Survey of Reinforcement Learning for Optimization in Automation
- URL: http://arxiv.org/abs/2502.09417v1
- Date: Thu, 13 Feb 2025 15:40:39 GMT
- Title: A Survey of Reinforcement Learning for Optimization in Automation
- Authors: Ahmad Farooq, Kamran Iqbal,
- Abstract summary: Review article examines the current landscape of RL within automation, with a particular focus on its roles in manufacturing, energy systems, and robotics.
It discusses state-of-the-art methods, major challenges, and upcoming avenues of research within each sector, highlighting RL's capacity to solve intricate optimization challenges.
- Score: 0.0
- License:
- Abstract: Reinforcement Learning (RL) has become a critical tool for optimization challenges within automation, leading to significant advancements in several areas. This review article examines the current landscape of RL within automation, with a particular focus on its roles in manufacturing, energy systems, and robotics. It discusses state-of-the-art methods, major challenges, and upcoming avenues of research within each sector, highlighting RL's capacity to solve intricate optimization challenges. The paper reviews the advantages and constraints of RL-driven optimization methods in automation. It points out prevalent challenges encountered in RL optimization, including issues related to sample efficiency and scalability; safety and robustness; interpretability and trustworthiness; transfer learning and meta-learning; and real-world deployment and integration. It further explores prospective strategies and future research pathways to navigate these challenges. Additionally, the survey includes a comprehensive list of relevant research papers, making it an indispensable guide for scholars and practitioners keen on exploring this domain.
Related papers
- Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
We explore the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making.
The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks.
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - A Comprehensive Survey of Reinforcement Learning: From Algorithms to Practical Challenges [2.2448567386846916]
Reinforcement Learning (RL) has emerged as a powerful paradigm in Artificial Intelligence (AI)
This paper presents a comprehensive survey of RL, meticulously analyzing a wide range of algorithms.
We offer practical insights into the selection and implementation of RL algorithms, addressing common challenges like convergence, stability, and the exploration-exploitation dilemma.
arXiv Detail & Related papers (2024-11-28T03:53:14Z) - Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms [50.91348344666895]
Evolutionary Reinforcement Learning (ERL) integrates Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for optimization.
This survey offers a comprehensive overview of the diverse research branches in ERL.
arXiv Detail & Related papers (2024-01-22T14:06:37Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open
Problems [0.0]
Reinforcement learning (RL) has experienced a dramatic increase in popularity.
There is still a wide range of domains inaccessible to RL due to the high cost and danger of interacting with the environment.
offline RL is a paradigm that learns exclusively from static datasets of previously collected interactions.
arXiv Detail & Related papers (2022-03-02T20:05:11Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z) - A Survey of Deep Reinforcement Learning Algorithms for Motion Planning
and Control of Autonomous Vehicles [2.7398985365813013]
We systematically summarize the current literature on studies that apply reinforcement learning (RL) to the motion planning and control of autonomous vehicles.
Many existing contributions can be attributed to the pipeline approach, which consists of many hand-crafted modules, each with a functionality selected for the ease of human interpretation.
This paper also presents a growing trend of work that falls into the end-to-end approach, which typically offers better performance and smaller system scales.
arXiv Detail & Related papers (2021-05-29T05:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.