Conformal prediction set for time-series
- URL: http://arxiv.org/abs/2206.07851v1
- Date: Wed, 15 Jun 2022 23:48:53 GMT
- Title: Conformal prediction set for time-series
- Authors: Chen Xu, Yao Xie
- Abstract summary: Uncertainty quantification is essential to studying complex machine learning methods.
We develop Ensemble Regularized Adaptive Prediction Set (ERAPS) to construct prediction sets for time-series.
We show valid marginal and conditional coverage by ERAPS, which also tends to yield smaller prediction sets than competing methods.
- Score: 16.38369532102931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When building either prediction intervals for regression (with real-valued
response) or prediction sets for classification (with categorical responses),
uncertainty quantification is essential to studying complex machine learning
methods. In this paper, we develop Ensemble Regularized Adaptive Prediction Set
(ERAPS) to construct prediction sets for time-series (with categorical
responses), based on the prior work of [Xu and Xie, 2021]. In particular, we
allow unknown dependencies to exist within features and responses that arrive
in sequence. Method-wise, ERAPS is a distribution-free and ensemble-based
framework that is applicable for arbitrary classifiers. Theoretically, we bound
the coverage gap without assuming data exchangeability and show asymptotic set
convergence. Empirically, we demonstrate valid marginal and conditional
coverage by ERAPS, which also tends to yield smaller prediction sets than
competing methods.
Related papers
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Distribution-free Conformal Prediction for Ordinal Classification [0.0]
Ordinal classification is common in real applications where the target variable has natural ordering among the class labels.
New conformal prediction methods are developed for constructing contiguous and non-contiguous prediction sets.
arXiv Detail & Related papers (2024-04-25T13:49:59Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
split conformal prediction represents a promising avenue to obtain finite-sample guarantees under minimal distribution-free assumptions.
We highlight the connection between split conformal prediction and classical tolerance predictors developed in the 1940s.
arXiv Detail & Related papers (2022-10-26T14:12:24Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
arXiv Detail & Related papers (2022-07-28T16:40:26Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting [4.716034416800441]
This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR)
EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), is suitable for nonstationary and heteroscedastic time series data, and can be applied on top of any forecasting model.
The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.
arXiv Detail & Related papers (2022-02-17T16:54:20Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Conformal prediction for time series [16.38369532102931]
textttEnbPI wraps around ensemble predictors, which is closely related to conformal prediction (CP) but does not require data exchangeability.
We perform extensive simulation and real-data analyses to demonstrate its effectiveness compared with existing methods.
arXiv Detail & Related papers (2020-10-18T21:05:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.