Spiking Neural Networks for Temporal Processing: Status Quo and Future Prospects
- URL: http://arxiv.org/abs/2502.09449v1
- Date: Thu, 13 Feb 2025 16:17:57 GMT
- Title: Spiking Neural Networks for Temporal Processing: Status Quo and Future Prospects
- Authors: Chenxiang Ma, Xinyi Chen, Yanchen Li, Qu Yang, Yujie Wu, Guoqi Li, Gang Pan, Huajin Tang, Kay Chen Tan, Jibin Wu,
- Abstract summary: Spiking Neural Networks (SNNs) excel in handling data with high efficiency, owing to their rich neuronal dynamics and sparse activity patterns.
Given the recent surge in the development of SNNs, there is an urgent need for a comprehensive evaluation of their temporal processing capabilities.
- Score: 41.8742357294068
- License:
- Abstract: Temporal processing is fundamental for both biological and artificial intelligence systems, as it enables the comprehension of dynamic environments and facilitates timely responses. Spiking Neural Networks (SNNs) excel in handling such data with high efficiency, owing to their rich neuronal dynamics and sparse activity patterns. Given the recent surge in the development of SNNs, there is an urgent need for a comprehensive evaluation of their temporal processing capabilities. In this paper, we first conduct an in-depth assessment of commonly used neuromorphic benchmarks, revealing critical limitations in their ability to evaluate the temporal processing capabilities of SNNs. To bridge this gap, we further introduce a benchmark suite consisting of three temporal processing tasks characterized by rich temporal dynamics across multiple timescales. Utilizing this benchmark suite, we perform a thorough evaluation of recently introduced SNN approaches to elucidate the current status of SNNs in temporal processing. Our findings indicate significant advancements in recently developed spiking neuron models and neural architectures regarding their temporal processing capabilities, while also highlighting a performance gap in handling long-range dependencies when compared to state-of-the-art non-spiking models. Finally, we discuss the key challenges and outline potential avenues for future research.
Related papers
- Beyond Timesteps: A Novel Activation-wise Membrane Potential Propagation Mechanism for Spiking Neural Networks in 3D cloud [26.80266410451645]
We propose a novel and general activation strategy for spiking neurons called Activation-wise Membrane Potential Propagation (AMP2)
In experiments on common point cloud tasks (classification, object, and scene segmentation) and event cloud tasks (action recognition) we found that AMP2 stabilizes SNN training, maintains competitive performance, and reduces latency compared to the traditional timestep-wise activation paradigm.
arXiv Detail & Related papers (2025-02-18T11:52:25Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
Spiking Neural Networks (SNNs) are known for their bio-plausibility and energy efficiency.
In this work, we explore the merger of novel computing and information encoding schemes in SNN architectures.
We investigate the tradeoffs of our proposal in terms of accuracy, inference latency, spiking sparsity, energy consumption, and datasets.
arXiv Detail & Related papers (2024-04-26T22:52:23Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
We propose a novel biologically inspired Long Short-Term Memory Leaky Integrate-and-Fire spiking neuron model, dubbed LSTM-LIF.
Our experimental results, on a diverse range of temporal classification tasks, demonstrate superior temporal classification capability, rapid training convergence, strong network generalizability, and high energy efficiency of the proposed LSTM-LIF model.
This work, therefore, opens up a myriad of opportunities for resolving challenging temporal processing tasks on emerging neuromorphic computing machines.
arXiv Detail & Related papers (2023-07-14T08:51:03Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal processing capability.
Existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither which can extract temporal dependencies adequately.
We take inspiration from biological synapses and propose a synaptic connection SNN model, to enhance the synapse-temporal receptive fields of synaptic connections.
We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks.
arXiv Detail & Related papers (2022-10-11T08:13:22Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
Learning of Deep Spiking Neural Network [7.503685643036081]
A bio-plausible SNN model with spatial-temporal property is a complex dynamic system.
We formulate SNN as a network of infinite impulse response (IIR) filters with neuron nonlinearity.
We propose a training algorithm that is capable to learn spatial-temporal patterns by searching for the optimal synapse filter kernels and weights.
arXiv Detail & Related papers (2020-02-19T01:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.