論文の概要: On Agnostic PAC Learning in the Small Error Regime
- arxiv url: http://arxiv.org/abs/2502.09496v1
- Date: Thu, 13 Feb 2025 17:03:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:50:17.257087
- Title: On Agnostic PAC Learning in the Small Error Regime
- Title(参考訳): 小誤差レジームにおけるAgnostic PAC学習について
- Authors: Julian Asilis, Mikael Møller Høgsgaard, Grigoris Velegkas,
- Abstract要約: 経験的リスク最小化学習者は、実現可能なケースでは最適だが、不可知なケースでは最適である。
Hanneke、Larsen、Zhivotovskiyの作業は、エラー項のパラメータとして$tau$を含めることで、この欠点に対処する。
我々の学習者は、一定の$c leq 2.1$に対して、誤りの少ない$tau + Omega left(sqrtfractau))m + fracd + log (1 / delta)m right)の厳密性を達成することを示す。
- 参考スコア(独自算出の注目度): 4.422219522591412
- License:
- Abstract: Binary classification in the classic PAC model exhibits a curious phenomenon: Empirical Risk Minimization (ERM) learners are suboptimal in the realizable case yet optimal in the agnostic case. Roughly speaking, this owes itself to the fact that non-realizable distributions $\mathcal{D}$ are simply more difficult to learn than realizable distributions -- even when one discounts a learner's error by $\mathrm{err}(h^*_{\mathcal{D}})$, the error of the best hypothesis in $\mathcal{H}$ for $\mathcal{D}$. Thus, optimal agnostic learners are permitted to incur excess error on (easier-to-learn) distributions $\mathcal{D}$ for which $\tau = \mathrm{err}(h^*_{\mathcal{D}})$ is small. Recent work of Hanneke, Larsen, and Zhivotovskiy (FOCS `24) addresses this shortcoming by including $\tau$ itself as a parameter in the agnostic error term. In this more fine-grained model, they demonstrate tightness of the error lower bound $\tau + \Omega \left(\sqrt{\frac{\tau (d + \log(1 / \delta))}{m}} + \frac{d + \log(1 / \delta)}{m} \right)$ in a regime where $\tau > d/m$, and leave open the question of whether there may be a higher lower bound when $\tau \approx d/m$, with $d$ denoting $\mathrm{VC}(\mathcal{H})$. In this work, we resolve this question by exhibiting a learner which achieves error $c \cdot \tau + O \left(\sqrt{\frac{\tau (d + \log(1 / \delta))}{m}} + \frac{d + \log(1 / \delta)}{m} \right)$ for a constant $c \leq 2.1$, thus matching the lower bound when $\tau \approx d/m$. Further, our learner is computationally efficient and is based upon careful aggregations of ERM classifiers, making progress on two other questions of Hanneke, Larsen, and Zhivotovskiy (FOCS `24). We leave open the interesting question of whether our approach can be refined to lower the constant from 2.1 to 1, which would completely settle the complexity of agnostic learning.
- Abstract(参考訳): 経験的リスク最小化(ERM: Empirical Risk Minimization)学習者は、実現可能なケースでは最適だが、不可知なケースでは最適である。
大まかに言えば、これは非実現可能分布 $\mathcal{D}$ が実現不可能な分布よりも学習が難しいという事実に起因している。たとえ学習者の誤りを $\mathrm{err}(h^*_{\mathcal{D}})$ で割引しても、$\mathcal{H}$ for $\mathcal{D}$ の最良の仮説の誤差は$\mathcal{D}$ である。
したがって、最適非依存学習者は、$\tau = \mathrm{err}(h^*_{\mathcal{D}})$が小さいような(より簡単な)分布に対して過剰な誤差を発生させることが許される。
Hanneke, Larsen, Zhivotovskiy (FOCS `24) の最近の研究は、この欠点に対処し、agnostic error term に $\tau$ をパラメータとして含めている。
このよりきめ細かいモデルでは、エラーの下位境界である$\tau + \Omega \left(\sqrt{\frac{\tau (d + \log(1 / \delta))}{m}} + \frac{d + \log(1 / \delta)}{m} \right)$を$\tau > d/m$とすると、$\tau \approx d/m$, $d$で$\mathrm{VC}(\mathcal{H})が与えられるとき、より低い境界が存在するかどうかという疑問を開き放つ。
本論では, 誤差$c \cdot \tau + O \left(\sqrt {\frac{\tau (d + \log(1 / \delta))}{m}} + \frac{d + \log(1 / \delta)}{m} \right)$ for a constant $c \leq 2.1$, so with the lower bound when $\tau \approx d/m$。
さらに,本学習者は計算効率が高く,ERM分類器の注意深い集約に基づいて,Henneke,Larsen,Zhivotovskiy (FOCS `24。
我々は、我々のアプローチが2.1から1への定数を下げるために洗練できるかどうかという興味深い疑問を解き放つ。
関連論文リスト
- Revisiting Agnostic PAC Learning [30.67561230812141]
PAC学習は、Valiant'84とVapnik and Chervonenkis'64,'74にさかのぼる、教師あり学習を研究するための古典的なモデルである。
経験的リスク最小化(英: Empirical Risk Minimization、ERM)は、訓練データに最も少ない誤りを犯すために$mathcalH$から仮説を出力する自然学習アルゴリズムである。
私たちはPAC学習を再考し、最良仮説の性能を$tau:=Pr_mathcalD[hstar_mathと表すと、ERMが実際は準最適であることを示す。
論文 参考訳(メタデータ) (2024-07-29T08:20:49Z) - Cryptographic Hardness of Learning Halfspaces with Massart Noise [59.8587499110224]
マスアートノイズの存在下でのPAC学習ハーフスペースの複雑さについて検討した。
我々は,最適0-1誤差が小さい場合でも,リアルタイムのMassartハーフスペース学習者が$Omega(eta)$よりも良い誤差を得られることを示す。
論文 参考訳(メタデータ) (2022-07-28T17:50:53Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
ガウス境界の下でのマスアートノイズ付きmathbbRd$におけるPAC学習ハーフスペースの問題について検討する。
この結果は,Massartモデルにおける学習ハーフスペースの複雑さを定性的に特徴づけるものである。
論文 参考訳(メタデータ) (2021-08-19T16:16:48Z) - Hardness of Learning Halfspaces with Massart Noise [56.98280399449707]
我々は、マッサート(有界)ノイズの存在下でPAC学習のハーフスペースの複雑さを研究します。
情報理論上最適なエラーとSQアルゴリズムで達成できる最高のエラーとの間に指数関数的なギャップがあることを示した。
論文 参考訳(メタデータ) (2020-12-17T16:43:11Z) - An Algorithm for Learning Smaller Representations of Models With Scarce
Data [0.0]
データセットが小さすぎるか、完全に代表的でない状況下で、二項分類問題を解くための欲求的アルゴリズムを提案する。
それは、ゆるやかな精度の制約、反復的なハイパーパラメータプルーニング手順、新しいデータを生成するために使われる関数といった訓練されたモデルに依存している。
論文 参考訳(メタデータ) (2020-10-15T19:17:51Z) - Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and
ReLUs under Gaussian Marginals [49.60752558064027]
ガウス境界の下では、半空間とReLUを不可知的に学習する基本的な問題について検討する。
我々の下限は、これらのタスクの現在の上限が本質的に最良のものであるという強い証拠を与える。
論文 参考訳(メタデータ) (2020-06-29T17:10:10Z) - Learning and Testing Variable Partitions [13.575794982844222]
我々は $mathcalO(k n2)(delta + epsilon)$ が、任意の $epsilon > 0$ に対して $tildemathcalO(n2 mathrmpoly (1/epsilon)$ で学習可能であることを示す。
また、両面のテスタでさえ$k = 2$の場合に$Omega(n)$クエリが必要であることも示しています。
論文 参考訳(メタデータ) (2020-03-29T10:12:32Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
本稿では,決定論的システムにおける関数近似を用いたQ$学習の問題について検討する。
もし$delta = Oleft(rho/sqrtdim_Eright)$なら、$Oleft(dim_Eright)$を使って最適なポリシーを見つけることができる。
論文 参考訳(メタデータ) (2020-02-17T18:41:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。