論文の概要: Low-degree learning and the metric entropy of polynomials
- arxiv url: http://arxiv.org/abs/2203.09659v4
- Date: Mon, 21 Oct 2024 18:58:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:52.438134
- Title: Low-degree learning and the metric entropy of polynomials
- Title(参考訳): 低次学習と多項式の計量エントロピー
- Authors: Alexandros Eskenazis, Paata Ivanisvili, Lauritz Streck,
- Abstract要約: 少なくとも$Omega(sqrtvarepsilon)2dlog n leq log mathsfM(mathscrF_n,d,|cdot|_L,varepsilon)は2辺の推定値$c(1-varepsilon)2dlogを満たす。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: Let $\mathscr{F}_{n,d}$ be the class of all functions $f:\{-1,1\}^n\to[-1,1]$ on the $n$-dimensional discrete hypercube of degree at most $d$. In the first part of this paper, we prove that any (deterministic or randomized) algorithm which learns $\mathscr{F}_{n,d}$ with $L_2$-accuracy $\varepsilon$ requires at least $\Omega((1-\sqrt{\varepsilon})2^d\log n)$ queries for large enough $n$, thus establishing the sharpness as $n\to\infty$ of a recent upper bound of Eskenazis and Ivanisvili (2021). To do this, we show that the $L_2$-packing numbers $\mathsf{M}(\mathscr{F}_{n,d},\|\cdot\|_{L_2},\varepsilon)$ of the concept class $\mathscr{F}_{n,d}$ satisfy the two-sided estimate $$c(1-\varepsilon)2^d\log n \leq \log \mathsf{M}(\mathscr{F}_{n,d},\|\cdot\|_{L_2},\varepsilon) \leq \frac{2^{Cd}\log n}{\varepsilon^4}$$ for large enough $n$, where $c, C>0$ are universal constants. In the second part of the paper, we present a logarithmic upper bound for the randomized query complexity of classes of bounded approximate polynomials whose Fourier spectra are concentrated on few subsets. As an application, we prove new estimates for the number of random queries required to learn approximate juntas of a given degree, functions with rapidly decaying Fourier tails and constant depth circuits of given size. Finally, we obtain bounds for the number of queries required to learn the polynomial class $\mathscr{F}_{n,d}$ without error in the query and random example models.
- Abstract(参考訳): f:\{-1,1\}^n\to[-1,1]$ を次数 $n$-次元離散ハイパーキューブの次数$d$ のクラスとする。
この論文の前半では、$\mathscr{F}_{n,d}$と$L_2$-accuracy$\varepsilon$が少なくとも$\Omega((1-\sqrt{\varepsilon})2^d\log n)$のクエリを必要とすることを証明し、このシャープネスをエスケナジスとイヴァニスヴィリの最近の上界の$n\to\infty$として確立する。
これを実現するために、$L_2$-packing number $\mathsf{M}(\mathscr{F}_{n,d},\|\cdot\|_{L_2},\varepsilon)$ of the concept class $\mathscr{F}_{n,d}$ satisfy the two-sided estimate $$c(1-\varepsilon)2^d\log n \leq \log \mathsf{M}(\mathscr{F}_{n,d},\|\cdot\|_{L_2},\varepsilon) \leq \frac{2^{Cd}\log n}{\varepsilon^4}$$$$$n for enough $n, $c, 0, $c, $0, $c, $0 を満足することを示した。
論文の第2部では、フーリエスペクトルが少数の部分集合に集中している有界近似多項式のクラスにおけるランダム化クエリ複雑性に対する対数上界について述べる。
応用として、与えられた次数の近似ジャンタの学習に必要なランダムなクエリ数、急速に崩壊するフーリエテールと所定の大きさの一定深さ回路の関数について、新しい推定値を示す。
最後に、多項式クラス $\mathscr{F}_{n,d}$ を学ぶのに必要なクエリ数について、クエリとランダムな例モデルでエラーのない境界を得る。
関連論文リスト
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - Quantum Sabotage Complexity [0.7812210699650152]
ここでは$mathsfQ(f_mathsfsab)$を示し、$f_mathsfsab$の量子クエリ複雑性を示す。
f$がインデックス関数であるとき、$mathsfQ(f_mathsfsab)=Theta(sqrtmathsfsab)$は、$mathsfQ(f_mathsfsab)=Theta(sqrtmathsf)の可能性を除外する。
論文 参考訳(メタデータ) (2024-08-22T17:57:58Z) - Sample-Efficient Linear Regression with Self-Selection Bias [7.605563562103568]
未知のインデックス設定における自己選択バイアスを伴う線形回帰の問題を考察する。
我々は,$mathbfw_1,ldots,mathbfw_kinを復元する,新しい,ほぼ最適なサンプル効率($k$)アルゴリズムを提案する。
このアルゴリズムは雑音の仮定をかなり緩めることに成功し、従って関連する最大線形回帰の設定にも成功している。
論文 参考訳(メタデータ) (2024-02-22T02:20:24Z) - Quantum and classical query complexities of functions of matrices [0.0]
任意の連続関数 $f(x):[-1,1]rightarrow [-1,1]$ に対して、計算の量子クエリ複雑性 $brai f(A) ketjpm varepsilon/4$ は$Omega(widetildedeg_varepsilon(f))$ で制限される。
論文 参考訳(メタデータ) (2023-11-13T00:45:41Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
任意の整数 $ninmathbbN$, $din1,ldots,n$ および任意の $varepsilon,deltain(0,1)$ に対して、有界関数 $f:-1,1nto[-1,1]$ に対して、少なくとも$d$ の次数を学ぶことができる。
論文 参考訳(メタデータ) (2021-09-21T13:19:04Z) - Sharper bounds for online learning of smooth functions of a single
variable [0.0]
ここでは$opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$を示します。
また、$opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$ も示します。
論文 参考訳(メタデータ) (2021-05-30T23:06:21Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
すべての決定木に対して、与えられた順序 $ellsqrtbinomdell (1+log n)ell-1,$ sum to at least $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, $c>0$ is a absolute constant。
論文 参考訳(メタデータ) (2020-08-24T06:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。