Prior-Constrained Association Learning for Fine-Grained Generalized Category Discovery
- URL: http://arxiv.org/abs/2502.09501v1
- Date: Thu, 13 Feb 2025 17:13:46 GMT
- Title: Prior-Constrained Association Learning for Fine-Grained Generalized Category Discovery
- Authors: Menglin Wang, Zhun Zhong, Xiaojin Gong,
- Abstract summary: This paper addresses generalized category discovery (GCD)
GCD is the task of clustering unlabeled data from potentially known or unknown categories.
We propose a Prior-constrained Association Learning method to capture and learn the semantic relations within data.
- Score: 24.241546246216082
- License:
- Abstract: This paper addresses generalized category discovery (GCD), the task of clustering unlabeled data from potentially known or unknown categories with the help of labeled instances from each known category. Compared to traditional semi-supervised learning, GCD is more challenging because unlabeled data could be from novel categories not appearing in labeled data. Current state-of-the-art methods typically learn a parametric classifier assisted by self-distillation. While being effective, these methods do not make use of cross-instance similarity to discover class-specific semantics which are essential for representation learning and category discovery. In this paper, we revisit the association-based paradigm and propose a Prior-constrained Association Learning method to capture and learn the semantic relations within data. In particular, the labeled data from known categories provides a unique prior for the association of unlabeled data. Unlike previous methods that only adopts the prior as a pre or post-clustering refinement, we fully incorporate the prior into the association process, and let it constrain the association towards a reliable grouping outcome. The estimated semantic groups are utilized through non-parametric prototypical contrast to enhance the representation learning. A further combination of both parametric and non-parametric classification complements each other and leads to a model that outperforms existing methods by a significant margin. On multiple GCD benchmarks, we perform extensive experiments and validate the effectiveness of our proposed method.
Related papers
- A Generic Method for Fine-grained Category Discovery in Natural Language Texts [38.297873969795546]
We introduce a method that successfully detects fine-grained clusters of semantically similar texts guided by a novel objective function.
The method uses semantic similarities in a logarithmic space to guide sample distributions in the Euclidean space.
We also propose a centroid inference mechanism to support real-time applications.
arXiv Detail & Related papers (2024-06-18T23:27:46Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - XCon: Learning with Experts for Fine-grained Category Discovery [4.787507865427207]
We present a novel method called Expert-Contrastive Learning (XCon) to help the model to mine useful information from the images.
Experiments on fine-grained datasets show a clear improved performance over the previous best methods, indicating the effectiveness of our method.
arXiv Detail & Related papers (2022-08-03T08:03:12Z) - Positive-Unlabeled Classification under Class-Prior Shift: A
Prior-invariant Approach Based on Density Ratio Estimation [85.75352990739154]
We propose a novel PU classification method based on density ratio estimation.
A notable advantage of our proposed method is that it does not require the class-priors in the training phase.
arXiv Detail & Related papers (2021-07-11T13:36:53Z) - AutoNovel: Automatically Discovering and Learning Novel Visual
Categories [138.80332861066287]
We present a new approach called AutoNovel to tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We evaluate AutoNovel on standard classification benchmarks and substantially outperform current methods for novel category discovery.
arXiv Detail & Related papers (2021-06-29T11:12:16Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
arXiv Detail & Related papers (2020-02-13T18:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.