論文の概要: Diffusing DeBias: a Recipe for Turning a Bug into a Feature
- arxiv url: http://arxiv.org/abs/2502.09564v2
- Date: Sun, 16 Feb 2025 22:42:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:20.764372
- Title: Diffusing DeBias: a Recipe for Turning a Bug into a Feature
- Title(参考訳): DeBiasを混乱させる - バグを機能に変えるためのレシピ
- Authors: Massimiliano Ciranni, Vito Paolo Pastore, Roberto Di Via, Enzo Tartaglione, Francesca Odone, Vittorio Murino,
- Abstract要約: 本稿では,Diffusing DeBias (DDB)について述べる。
提案手法は, 条件付き拡散モデルを用いて, バイアスアンプモデルの訓練に用いる合成バイアスアライメント画像を生成する。
提案手法は,複数のベンチマークデータセットにおける現在の最先端の状態を,大きなマージンで打ち負かす。
- 参考スコア(独自算出の注目度): 15.214861534330236
- License:
- Abstract: Deep learning model effectiveness in classification tasks is often challenged by the quality and quantity of training data which, whenever containing strong spurious correlations between specific attributes and target labels, can result in unrecoverable biases in model predictions. Tackling these biases is crucial in improving model generalization and trust, especially in real-world scenarios. This paper presents Diffusing DeBias (DDB), a novel approach acting as a plug-in for common methods in model debiasing while exploiting the inherent bias-learning tendency of diffusion models. Our approach leverages conditional diffusion models to generate synthetic bias-aligned images, used to train a bias amplifier model, to be further employed as an auxiliary method in different unsupervised debiasing approaches. Our proposed method, which also tackles the common issue of training set memorization typical of this type of tech- niques, beats current state-of-the-art in multiple benchmark datasets by significant margins, demonstrating its potential as a versatile and effective tool for tackling dataset bias in deep learning applications.
- Abstract(参考訳): 分類タスクにおける深層学習モデルの有効性は、特定の属性とターゲットラベルの間に強い急激な相関関係を含む場合、モデル予測における発見不可能なバイアスをもたらす訓練データの品質と量によってしばしば疑問視される。
これらのバイアスに対処することは、特に現実世界のシナリオにおいて、モデルの一般化と信頼を改善するために不可欠である。
本稿では,拡散モデルのバイアス学習傾向を生かしながら,モデルデバイアスの一般的な手法のプラグインとして機能するDiffusing DeBias(DDB)を提案する。
提案手法は, 条件付き拡散モデルを用いて, バイアスアンプモデルの訓練に用いる合成バイアスアライメント画像を生成し, 異なる教師なしデバイアス手法における補助的手法としてさらに活用する。
提案手法は、このタイプの技術に典型的なトレーニングセット記憶の一般的な問題にも取り組み、複数のベンチマークデータセットにおける現在の最先端の状態をかなりのマージンで打ち負かし、ディープラーニングアプリケーションにおけるデータセットバイアスに取り組むための汎用的で効果的なツールとしての可能性を示す。
関連論文リスト
- Debiasing Classifiers by Amplifying Bias with Latent Diffusion and Large Language Models [9.801159950963306]
DiffuBiasはテキスト・画像生成のための新しいパイプラインであり、バイアス・コンフリクト・サンプルを生成することで分類器の堅牢性を高める。
DrouBiasは、安定拡散モデルを活用する最初のアプローチである。
総合実験により,DiffuBiasがベンチマークデータセット上で最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-11-25T04:11:16Z) - Model Debiasing by Learnable Data Augmentation [19.625915578646758]
本稿では,トレーニングを正規化可能なデータ拡張戦略を備えた,新しい2段階学習パイプラインを提案する。
合成および現実的なバイアス付きデータセットの実験は、最先端の分類精度を示し、競合する手法より優れている。
論文 参考訳(メタデータ) (2024-08-09T09:19:59Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Improving QA Generalization by Concurrent Modeling of Multiple Biases [61.597362592536896]
既存のNLPデータセットには、モデルが容易に活用できる様々なバイアスが含まれており、対応する評価セット上で高いパフォーマンスを達成することができる。
本稿では、トレーニングデータにおける複数のバイアスの同時モデリングにより、ドメイン内およびドメイン外両方のデータセットのパフォーマンスを改善するための一般的なフレームワークを提案する。
我々は,様々な領域の学習データと異なる強度の複数のバイアスを持つ抽出的質問応答の枠組みを広く評価した。
論文 参考訳(メタデータ) (2020-10-07T11:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。