論文の概要: Theoretical Benefit and Limitation of Diffusion Language Model
- arxiv url: http://arxiv.org/abs/2502.09622v1
- Date: Thu, 13 Feb 2025 18:59:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:51:08.940965
- Title: Theoretical Benefit and Limitation of Diffusion Language Model
- Title(参考訳): 拡散言語モデルの理論的利点と限界
- Authors: Guhao Feng, Yihan Geng, Jian Guan, Wei Wu, Liwei Wang, Di He,
- Abstract要約: 拡散言語モデルは、テキスト生成の有望なアプローチとして現れてきた。
本稿では,広く使われている拡散言語モデルMasked Diffusion Model(MDM)の厳密な理論的解析について述べる。
我々の分析は、MDMの利点と限界を理解するための最初の理論的基盤を確立している。
- 参考スコア(独自算出の注目度): 47.579673047639126
- License:
- Abstract: Diffusion language models have emerged as a promising approach for text generation. One would naturally expect this method to be an efficient replacement for autoregressive models since multiple tokens can be sampled in parallel during each diffusion step. However, its efficiency-accuracy trade-off is not yet well understood. In this paper, we present a rigorous theoretical analysis of a widely used type of diffusion language model, the Masked Diffusion Model (MDM), and find that its effectiveness heavily depends on the target evaluation metric. Under mild conditions, we prove that when using perplexity as the metric, MDMs can achieve near-optimal perplexity in sampling steps regardless of sequence length, demonstrating that efficiency can be achieved without sacrificing performance. However, when using the sequence error rate--which is important for understanding the "correctness" of a sequence, such as a reasoning chain--we show that the required sampling steps must scale linearly with sequence length to obtain "correct" sequences, thereby eliminating MDM's efficiency advantage over autoregressive models. Our analysis establishes the first theoretical foundation for understanding the benefits and limitations of MDMs. All theoretical findings are supported by empirical studies.
- Abstract(参考訳): 拡散言語モデルは、テキスト生成の有望なアプローチとして現れてきた。
拡散ステップ毎に複数のトークンを並列にサンプリングできるので、この手法が自己回帰モデルの効率的な置換であると自然に期待できる。
しかし、その効率と精度のトレードオフはまだよく理解されていない。
本稿では,広く使われている拡散言語モデルであるMasked Diffusion Model(MDM)の厳密な理論的解析を行い,その有効性は対象評価基準に大きく依存していることを示す。
軽度条件下では,MDMをメートル法として用いると,シーケンス長に関わらずサンプリングステップにおいてほぼ最適なパープレキシティを達成でき,性能を犠牲にすることなく効率を向上できることを示す。
しかし、列の「正確性」を理解するのに重要なシーケンスエラー率を使用する場合、必要となるサンプリングステップがシーケンス長と線形にスケールして「正しい」シーケンスを得る必要があることを示し、自動回帰モデルよりもMDMの効率の優位性を排除している。
我々の分析は、MDMの利点と限界を理解するための最初の理論的基盤を確立している。
全ての理論的な発見は経験的研究によって支えられている。
関連論文リスト
- Latent Space Score-based Diffusion Model for Probabilistic Multivariate Time Series Imputation [6.9295879301090535]
確率的時系列計算のための遅延空間スコアベース拡散モデル(LSSDM)を提案する。
LSSDMは、計算機構のより良い説明と不確実性解析を提供しながら、優れた計算性能を実現する。
論文 参考訳(メタデータ) (2024-09-13T15:32:26Z) - Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling [47.82616476928464]
仮面拡散モデル (MDM) は離散データの生成モデルとして人気がある。
我々はMDMのトレーニングとサンプリングの両方が理論的に時間変数から解放されていることを示す。
一般に使用されている32ビット浮動小数点精度においても,まず基礎となる数値問題を同定した。
論文 参考訳(メタデータ) (2024-09-04T17:48:19Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Towards a mathematical theory for consistency training in diffusion
models [17.632123036281957]
本稿では,一貫性モデルの理論的基盤を確立するための第一歩を踏み出す。
分布中のターゲットに近接する$varepsilon$のサンプルを生成するためには、データ次元で$d5/2/varepsilon$を超える一貫性学習のステップの数に十分であることを示す。
我々の理論は一貫性モデルの有効性と有効性に関する厳密な洞察を与え、下流推論タスクにおけるそれらの有用性を示す。
論文 参考訳(メタデータ) (2024-02-12T17:07:02Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
本研究では,異なるドメインで生成された場合,サンプルがどのようなものであったのかを仮定した,ドメイン反事実と呼ばれる特定のタイプの因果クエリを解析する。
本研究では, 潜在構造因果モデル (SCM) の回復は, ドメイン・デファクト・デファクトを推定するために不要であることを示す。
また、モデル生成過程を単純化し、生成モデル推定を行うための理論的基盤となる実用的なアルゴリズムも開発する。
論文 参考訳(メタデータ) (2023-06-20T04:19:06Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。