Imit Diff: Semantics Guided Diffusion Transformer with Dual Resolution Fusion for Imitation Learning
- URL: http://arxiv.org/abs/2502.09649v1
- Date: Tue, 11 Feb 2025 14:03:57 GMT
- Title: Imit Diff: Semantics Guided Diffusion Transformer with Dual Resolution Fusion for Imitation Learning
- Authors: Yuhang Dong, Haizhou Ge, Yupei Zeng, Jiangning Zhang, Beiwen Tian, Guanzhong Tian, Hongrui Zhu, Yufei Jia, Ruixiang Wang, Ran Yi, Guyue Zhou, Longhua Ma,
- Abstract summary: We introduce Imit Diff, a semanstic guided diffusion transformer with dual resolution fusion for imitation learning.
Our approach leverages prior knowledge from vision language foundation models to translate high-level semantic instruction into pixel-level visual localization.
We introduce an implementation of Consistency Policy within the diffusion transformer architecture to improve both real-time performance and motion smoothness in embodied agent control.
- Score: 26.018598352491935
- License:
- Abstract: Visuomotor imitation learning enables embodied agents to effectively acquire manipulation skills from video demonstrations and robot proprioception. However, as scene complexity and visual distractions increase, existing methods that perform well in simple scenes tend to degrade in performance. To address this challenge, we introduce Imit Diff, a semanstic guided diffusion transformer with dual resolution fusion for imitation learning. Our approach leverages prior knowledge from vision language foundation models to translate high-level semantic instruction into pixel-level visual localization. This information is explicitly integrated into a multi-scale visual enhancement framework, constructed with a dual resolution encoder. Additionally, we introduce an implementation of Consistency Policy within the diffusion transformer architecture to improve both real-time performance and motion smoothness in embodied agent control.We evaluate Imit Diff on several challenging real-world tasks. Due to its task-oriented visual localization and fine-grained scene perception, it significantly outperforms state-of-the-art methods, especially in complex scenes with visual distractions, including zero-shot experiments focused on visual distraction and category generalization. The code will be made publicly available.
Related papers
- Duplex: Dual Prototype Learning for Compositional Zero-Shot Learning [17.013498508426398]
Compositional Zero-Shot Learning (CZSL) aims to enable models to recognize novel compositions of visual states and objects that were absent during training.
We propose Duplex, a novel dual-prototype learning method that integrates semantic and visual prototypes through a carefully designed dual-branch architecture.
arXiv Detail & Related papers (2025-01-13T08:04:32Z) - EAGLE: Enhanced Visual Grounding Minimizes Hallucinations in Instructional Multimodal Models [54.234657224615354]
Large language models and vision transformers have demonstrated impressive zero-shot capabilities, enabling significant transferability in downstream tasks.
Despite incorporating vast image and language pre-training, these multi-modal architectures often generate responses that deviate from the ground truth in the image data.
Current methods for mitigating hallucinations generally focus on regularizing the language component, improving the fusion module, or ensembling multiple visual encoders to improve visual representation.
We show that a straightforward reformulation of the original contrastive pre-training task results in an improved visual encoder that can be incorporated into the instructional multi-modal architecture without additional instructional training.
arXiv Detail & Related papers (2025-01-06T00:39:31Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - Improving In-Context Learning in Diffusion Models with Visual
Context-Modulated Prompts [83.03471704115786]
We introduce improved Prompt Diffusion (iPromptDiff) in this study.
iPromptDiff integrates an end-to-end trained vision encoder that converts visual context into an embedding vector.
We show that a diffusion-based vision foundation model, when equipped with this visual context-modulated text guidance and a standard ControlNet structure, exhibits versatility and robustness across a variety of training tasks.
arXiv Detail & Related papers (2023-12-03T14:15:52Z) - SeMAIL: Eliminating Distractors in Visual Imitation via Separated Models [22.472167814814448]
We propose a new model-based imitation learning algorithm named Separated Model-based Adversarial Imitation Learning (SeMAIL)
Our method achieves near-expert performance on various visual control tasks with complex observations and the more challenging tasks with different backgrounds from expert observations.
arXiv Detail & Related papers (2023-06-19T04:33:44Z) - Bilevel Fast Scene Adaptation for Low-Light Image Enhancement [50.639332885989255]
Enhancing images in low-light scenes is a challenging but widely concerned task in the computer vision.
Main obstacle lies in the modeling conundrum from distribution discrepancy across different scenes.
We introduce the bilevel paradigm to model the above latent correspondence.
A bilevel learning framework is constructed to endow the scene-irrelevant generality of the encoder towards diverse scenes.
arXiv Detail & Related papers (2023-06-02T08:16:21Z) - Episodic Transformer for Vision-and-Language Navigation [142.6236659368177]
This paper focuses on addressing two challenges: handling long sequence of subtasks, and understanding complex human instructions.
We propose Episodic Transformer (E.T.), a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
Our approach sets a new state of the art on the challenging ALFRED benchmark, achieving 38.4% and 8.5% task success rates on seen and unseen test splits.
arXiv Detail & Related papers (2021-05-13T17:51:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.