論文の概要: Integrating Spatiotemporal Vision Transformer into Digital Twins for High-Resolution Heat Stress Forecasting in Campus Environments
- arxiv url: http://arxiv.org/abs/2502.09657v1
- Date: Wed, 12 Feb 2025 05:27:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:46:01.117763
- Title: Integrating Spatiotemporal Vision Transformer into Digital Twins for High-Resolution Heat Stress Forecasting in Campus Environments
- Title(参考訳): キャンパス環境における高分解能熱応力予測のための時空間視覚変換器のデジタル双極子への統合
- Authors: Wenjing Gong, Xinyue Ye, Keshu Wu, Suphanut Jamonnak, Wenyu Zhang, Yifan Yang, Xiao Huang,
- Abstract要約: 本研究は, 熱ストレス予測と意思決定を強化するため, 気候時空間デジタルツインフレームワークを提案する。
テキサス州のキャンパスをテストベッドとして,空間および気象データを用いて高分解能物理モデルシミュレーションを合成し,微細な人体熱予測法を開発した。
- 参考スコア(独自算出の注目度): 14.46777973030641
- License:
- Abstract: Extreme heat events exacerbated by climate change pose significant challenges to urban resilience and planning. This study introduces a climate-responsive digital twin framework integrating the Spatiotemporal Vision Transformer (ST-ViT) model to enhance heat stress forecasting and decision-making. Using a Texas campus as a testbed, we synthesized high-resolution physical model simulations with spatial and meteorological data to develop fine-scale human thermal predictions. The ST-ViT-powered digital twin enables efficient, data-driven insights for planners, policymakers, and campus stakeholders, supporting targeted heat mitigation strategies and advancing climate-adaptive urban design.
- Abstract(参考訳): 気候変動によって悪化する極端に暑さは、都市のレジリエンスと計画に重大な課題をもたらす。
本研究では、時空間視覚変換器(ST-ViT)モデルを統合し、熱ストレス予測と意思決定を強化する気候応答型デジタルツインフレームワークを提案する。
テキサス州のキャンパスをテストベッドとして,空間および気象データを用いて高分解能物理モデルシミュレーションを合成し,微細な人体熱予測法を開発した。
ST-ViTを動力とするデジタルツインは、プランナー、政策立案者、キャンパスのステークホルダーに対して効率的でデータ駆動的な洞察を可能にし、ターゲットとなる熱緩和戦略をサポートし、気候に適応した都市デザインを推進している。
関連論文リスト
- Adopting Explainable-AI to investigate the impact of urban morphology design on energy and environmental performance in dry-arid climates [0.0]
本研究では,都市建築エネルギーモデリング(UBEM)と機械学習(ML)と説明可能なAI技術を組み合わせた都市形態評価手法を提案する。
テヘランの密集した都市景観をケーススタディとして、この研究は30の形態パラメータが主要なエネルギー指標に与える影響を評価し、ランク付けする。
その結果、建築形態、窓と壁の比率、商業比率がエネルギー効率に影響を与える最も重要なパラメータであることが判明した。
論文 参考訳(メタデータ) (2024-12-13T09:19:49Z) - Spatio-Temporal Jump Model for Urban Thermal Comfort Monitoring [0.0]
空間次元と時間次元の両方にまたがってデータを扱うアテンポ的ハンドルを導入する。
我々は,本手法を広範囲なシミュレーションにより検証し,真に基礎となる分割を復元する際の精度を実証した。
本提案では, 都市環境の動的設定と実環境モニタリングへの適合性を実証し, その有効性を示す。
論文 参考訳(メタデータ) (2024-11-14T15:36:19Z) - A Machine Learning Approach for the Efficient Estimation of Ground-Level Air Temperature in Urban Areas [6.7236795813629]
都市で発生する都市ヒートアイランド(UHI)現象は、その熱応力を増大させ、より持続可能な都市を実現するための障害の1つである。
本研究では,都市域の空間的・気象的変数と街路レベルの空気温度を関連付けるために,イメージ・ツー・イメージ・ディープ・ニューラル・ネットワーク(DNN)の有用性を検討する。
街路レベルでの空気温度は、特定のユースケースに対して空間的にも時間的にも推定され、既存のよく確立された数値モデルと比較される。
論文 参考訳(メタデータ) (2024-11-05T15:05:23Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Towards Invariant Time Series Forecasting in Smart Cities [21.697069894721448]
本研究では,異なる都市環境下でのより堅牢な予測のために,不変表現を導出する手法を提案する。
本手法は, 気候モデル, 都市計画, スマートシティ資源管理など, 多様な分野に拡張することができる。
論文 参考訳(メタデータ) (2024-05-08T21:23:01Z) - STC-ViT: Spatio Temporal Continuous Vision Transformer for Weather Forecasting [0.0]
天気予報のための時空間連続トランスフォーマービジョンであるSTC-ViTを提案する。
STC-ViTは、連続した天気変化を時間とともに学習するために、マルチヘッドアテンション機構を備えた連続時間ニューラルODE層を組み込んでいる。
STC-ViTは,操作型数値天気予報(NWP)モデルと,深層学習に基づく天気予報モデルとを比較した。
論文 参考訳(メタデータ) (2024-02-28T01:15:30Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。