論文の概要: A Multimodal Physics-Informed Neural Network Approach for Mean Radiant Temperature Modeling
- arxiv url: http://arxiv.org/abs/2503.08482v1
- Date: Tue, 11 Mar 2025 14:36:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 22:35:51.82083
- Title: A Multimodal Physics-Informed Neural Network Approach for Mean Radiant Temperature Modeling
- Title(参考訳): 平均放射温度モデリングのためのマルチモーダル物理インフォームドニューラルネットワークアプローチ
- Authors: Pouya Shaeri, Saud AlKhaled, Ariane Middel,
- Abstract要約: 本研究では,短波・長波放射モデリングと深層学習技術を統合した物理インフォームドニューラルネットワーク(PINN)手法を提案する。
気象データ,建築環境特性,魚眼画像由来シェーディング情報を含むマルチモーダルデータセットを活用することにより,物理的整合性を維持しつつ予測精度を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Outdoor thermal comfort is a critical determinant of urban livability, particularly in hot desert climates where extreme heat poses challenges to public health, energy consumption, and urban planning. Mean Radiant Temperature ($T_{mrt}$) is a key parameter for evaluating outdoor thermal comfort, especially in urban environments where radiation dynamics significantly impact human thermal exposure. Traditional methods of estimating $T_{mrt}$ rely on field measurements and computational simulations, both of which are resource intensive. This study introduces a Physics-Informed Neural Network (PINN) approach that integrates shortwave and longwave radiation modeling with deep learning techniques. By leveraging a multimodal dataset that includes meteorological data, built environment characteristics, and fisheye image-derived shading information, our model enhances predictive accuracy while maintaining physical consistency. Our experimental results demonstrate that the proposed PINN framework outperforms conventional deep learning models, with the best-performing configurations achieving an RMSE of 3.50 and an $R^2$ of 0.88. This approach highlights the potential of physics-informed machine learning in bridging the gap between computational modeling and real-world applications, offering a scalable and interpretable solution for urban thermal comfort assessments.
- Abstract(参考訳): 屋外の熱的快適さは、特に暑さが公衆衛生、エネルギー消費、都市計画に困難をもたらす砂漠の気候において、都市の自由を決定づける重要な要因である。
平均放射温度(T_{mrt}$)は屋外の熱的快適性を評価するための重要なパラメータである。
T_{mrt}$を推定する従来の方法は、フィールドの測定と計算シミュレーションに依存しており、どちらもリソース集約である。
本研究では,短波・長波放射モデリングと深層学習技術を統合した物理情報ニューラルネットワーク(PINN)手法を提案する。
気象データ,建築環境特性,魚眼画像由来シェーディング情報を含むマルチモーダルデータセットを活用することにより,物理的整合性を維持しつつ予測精度を向上させる。
実験の結果,提案したPINNフレームワークは従来のディープラーニングモデルよりも優れており,RMSEが3.50ドル,R^2$が0.88ドルであることがわかった。
このアプローチは、計算モデルと実世界のアプリケーションの間のギャップを埋める物理インフォームド機械学習の可能性を強調し、都市熱快適性評価のためのスケーラブルで解釈可能なソリューションを提供する。
関連論文リスト
- FuXi-RTM: A Physics-Guided Prediction Framework with Radiative Transfer Modeling [10.780042503723806]
FuXi-RTMは物理誘導型ディープラーニングフレームワークで、物理的な一貫性を保ちながら天気予報精度を向上させる。
FuXi-RTM は一次予測モデル (FuXi) と固定深層学習に基づく放射移動モデル (DLRTM) を統合する。
5年間のデータセットで評価され、FuXi-RTMは3320変数とリードタイムの組み合わせの88.51%で非制約のデータセットを上回っている。
論文 参考訳(メタデータ) (2025-03-25T08:21:58Z) - Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies [57.23978190717341]
我々は,$CO$ plume マイグレーションのリアルタイム・高分解能シミュレーションのためのニューラル演算子(FNO)モデルを開発した。
このモデルは、現実的な地下パラメータから生成された包括的なデータセットに基づいて訓練される。
本稿では,実際の地質学的位置を評価する上で重要なモデルから予測の信頼性を向上させるための様々な戦略を提案する。
論文 参考訳(メタデータ) (2025-03-14T02:58:24Z) - Accurate Prediction of Temperature Indicators in Eastern China Using a Multi-Scale CNN-LSTM-Attention model [0.0]
マルチスケールの畳み込み型CNN-LSTM-Attentionアーキテクチャに基づく天気予報モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)、Long Short-Term Memory(LSTM)ネットワーク、およびアテンションメカニズムを統合している。
実験結果から, モデルが高精度に温度変動を予測できることが示唆された。
論文 参考訳(メタデータ) (2024-12-11T00:42:31Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
パラメータ化は、気候予測において、系統的なエラーと大きな不確実性の主な原因である。
深層学習(DL)に基づくパラメータ化は、計算に高価で高解像度のショートシミュレーションのデータに基づいて訓練されており、気候モデルを改善するための大きな可能性を示している。
本稿では,DLに基づくパラメータ化のための効率的な教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T10:02:49Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
本稿では,エネルギー収支モデルの物理温度応答方程式を満たすデータ駆動エミュレータであるFaIRGPを紹介する。
本稿では,FaIRGPを用いて大気上層放射力の推定値を得る方法について述べる。
この研究が、気候エミュレーションにおけるデータ駆動手法の採用の拡大に寄与することを期待している。
論文 参考訳(メタデータ) (2023-07-14T08:43:36Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Physics-constrained deep learning postprocessing of temperature and
humidity [0.0]
深層学習に基づく後処理モデルにおける物理的整合性を実現することを提案する。
熱力学状態方程式を強制するためにニューラルネットワークを制約することは、物理的に一貫性のある予測をもたらす。
論文 参考訳(メタデータ) (2022-12-07T09:31:25Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Deep Learning based Extreme Heatwave Forecast [8.975667614727648]
最先端のプラシム・プラネット・シミュレーターの気候モデルデータを用いて,大クラスのアンダーサンプリングと転送学習を含む畳み込みニューラルネットワークに基づく深層学習フレームワークが,極端な熱波の発生を予測する上で有意な性能を発揮することを示した。
論文 参考訳(メタデータ) (2021-03-17T16:10:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。